Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu x nguyên nhé bạn :)
\(x^2+10x+10=\left(x^2+10x+25\right)-15\)
Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)
Khi đó:\(\left(x+5\right)^2-a^2=15\)
\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)
Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !
sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ
\(a.\) Với \(a+b+c=0\) thì \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
\(b.\) Công thức tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)
\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)
Do đó, suy ra được: \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)
\(P=\frac{1}{a^2+a+1}\) ( với a khác 1 )
=> \(\frac{1}{P}=a^2+a+1=a^2+2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(a+\frac{1}{2}\right)^2+\frac{3.}{4}\ge\frac{3}{4}\) vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
Dấu "=" xảy ra <=> \(\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)( thỏa mãn )
Vậy GTNN của \(\frac{1}{P}=\frac{3}{4}\)đạt tại a = - 1/2.
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
Ta có \(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
\(P=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(P=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(P=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Áp dụng bdt Cô-si ( tự làm lười lắm :>)
\(\Rightarrow P=3+2+2+2=9\)
\(\Rightarrow P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
GTNN của P là 9
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)
Áp dụng BĐT Bunhiacopxki
\(\Rightarrow P\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy Min P = 9 <=> a = b = c = 1
Ta co:
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\left(\frac{1}{a}-2\right)^2+\left(\frac{1}{b}-2\right)^2+6\left(\frac{1}{a}+\frac{1}{b}\right)-6\ge\frac{24}{a+b}-6=18\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)