K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

Cue: Chỉ cần thu gọn.... thì bài toán sẽ vô cung dễ. 

6 tháng 5 2019

Quá ez, nhưng cũng khá khen cho m đấy tth =))

\(A=\frac{2\left(a^3c+b^3a+c^3b\right)}{\omega\left(x+y+z\right)}.\left(\frac{a^3}{x}+\frac{b^3}{y}+\frac{c^3}{z}\right)\)

     \(=\frac{2\Sigma_{cyc}a^3c}{abc.\Sigma\left(ab+bc\right)}.\Sigma\frac{a^3}{ab+ac}\)

      \(=\frac{\Sigma_{cyc}a^3c}{abc\left(ab+bc+ca\right)}.\Sigma\frac{a^2}{b+c}\)

     \(\ge\frac{\Sigma_{cyc}a^3c}{abc.\frac{\left(a+b+c\right)^2}{3}}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(áp dụng \(\Sigma ab\le\frac{\left(\Sigma a\right)^2}{3}\)và Cô-si dạng engel)

       \(=\frac{3\Sigma_{cyc}a^3c}{2abc\left(a+b+c\right)}\)

Ta đi chứng minh \(\frac{\Sigma_{cyc}a^3c}{abc\left(a+b+c\right)}\ge1\)thật vậy

Bđt \(\Leftrightarrow\frac{\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}}{a+b+c}\ge1\)

Có \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

\(\Rightarrow\frac{\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}}{a+b+c}\ge1\left(Q.E.D\right)\)

Nên \(A\ge\frac{3\Sigma_{cyc}a^3c}{2abc\left(a+b+c\right)}\ge\frac{3}{2}\)

Dấu "=" tại a=b=c và w=a3

P/S: 2 anh chị giỏi quá, nghĩ hẳn ra đề luôn , muốn solo toán với em không ? >: e lớp 7 thôi hà

13 tháng 2 2017

wow, axit nhân tạo giỏi quá

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^