Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
Áp dụng BĐT Bunhiakovski
\(VT^2=\left(\sqrt{a+b}.1+\sqrt{b+c}.1+\sqrt{c+a}.1\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=3.2\left(a+b+c\right)=6\)
Do đó \(VT\le\sqrt{6}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{a+b}}{1}=\dfrac{\sqrt{b+c}}{1}=\dfrac{\sqrt{c+a}}{1}\\a+b+c=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Bunhiacopxki, ta có :
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
\(P=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\)
\(\frac{2}{\sqrt{3}}P=\frac{2}{\sqrt{3}}.\sqrt{a+1}+\frac{2}{\sqrt{3}}.\sqrt{b+1}+\frac{2}{\sqrt{3}}.\sqrt{c+1}\)
\(\le\frac{\frac{4}{3}+a+1}{2}+\frac{\frac{4}{3}+b+1}{2}+\frac{\frac{4}{3}+c+1}{2}\)
\(=\frac{7}{2}+\frac{1}{2}=4\)
\(\Rightarrow P\le\frac{4.\sqrt{3}}{2}=2\sqrt{3}< 3,5\)
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
\(a.\) Áp dụng BĐT Cô - Si cho các số không âm , ta có :
\(\sqrt{1}.\sqrt{a+1}\le\dfrac{a+1+1}{2}=\dfrac{a+2}{2}\)
\(\sqrt{1}.\sqrt{b+1}\le\dfrac{b+1+1}{2}=\dfrac{b+2}{2}\)
\(\sqrt{1}.\sqrt{c+1}\le\dfrac{c+1+1}{2}=\dfrac{c+2}{2}\)
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\dfrac{a+b+c+6}{2}=\dfrac{7}{2}=3,5\)
Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}a+1=1\\b+1=1\\c+1=1\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)\(\Rightarrow a+b+c\ne1\left(trái-với-giả-thiết\right)\)
\(\Rightarrow\) Dấu \("="\) không xảy ra .
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
\(b.\) Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+a+c\right)=3.2=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)
Dấu " = " xảy ra khi : \(a+b=b+c=a+c\Rightarrow a=b=c=\dfrac{1}{3}\)
Câu a : Dùng BĐT Bu-nhi-a-cốp-xki ta có :
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{3\left(a+b+c+3\right)}=\sqrt{12}=3,46< 3,5\)
Câu b tương tự :
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6\left(a+b+c\right)}=\sqrt{6}\)
SD bunhiacoxki
chúc mm