K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

Não đặc-.-

Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek

Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương

Bài làm:

Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)

\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)

\(=1-1=0\)

Dấu "=" xảy ra khi: \(a=b=c\)

28 tháng 9 2020

Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r

10 tháng 10 2020

không đâu cá tiền luôn 500 đồng lun sợ gì :))))) đùa thui ko có đâu nhé

21 tháng 8 2019

\(\frac{\left(a+b\right)^2}{c}+4c\ge2\sqrt{\frac{\left(a+b\right)^2}{c}\cdot4c}=4\left(a+b\right)\\ \frac{\left(b+c\right)^2}{a}+4a\ge2\sqrt{\frac{\left(b+c\right)^2}{a}\cdot4a}=4\left(b+c\right)\\ \frac{\left(c+a\right)^2}{b}+4b\ge2\sqrt{\frac{\left(c+a\right)^2}{b}\cdot4b}=4\left(c+a\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}+4\left(a+b+c\right)\ge8\left(a+b+c\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

Lời giải:

Ta thấy:

\(\text{VT}=a+2b+c=(a+b+c)+b=1+b(1)\)

Vế phải:

Áp dụng BĐT AM-GM:
\(4(1-a)(1-c)\leq (1-a+1-c)^2=(2-a-c)^2=(1+a+b+c-a-c)^2=(1+b)^2(2)\)

\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1-b)(1+b)^2\)

Mà : \((1-b)(1+b)^2-(1+b)=(1+b)[(1-b^2)-1]=-b^2(1+b)\leq 0, \forall b\geq 0\)

Do đó: \((1-b)(1+b)^2\leq 1+b(3)\)

Từ (1);(2);(3) ta có đpcm

Dấu bằng xảy ra khi \(a=c=\frac{1}{2}; b=0\)

27 tháng 4 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a+b+c+1\right)^2=\left(a.1+\sqrt{3}.\frac{b+c+1}{\sqrt{3}}\right)^2\le\left(a^2+3\right)\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

Từ đó bài toán đưa về :

\(\left(b^2+3\right)\left(c^2+3\right)\ge4\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

\(\Leftrightarrow b^2c^2+3b^2+3c^2+9\ge4+\frac{4}{3}\left(b^2+c^2+2bc+2b+2c+1\right)\)

\(\Leftrightarrow b^2c^2+\frac{5}{3}b^2+\frac{5}{3}c^2+\frac{11}{3}\ge\frac{8}{3}bc+\frac{8}{3}b+\frac{8}{3}c\)

\(\Leftrightarrow b^2c^2+1-2bc+\frac{b^2+c^2-2bc}{3}+\frac{4}{3}\left(b^2-2b+1\right)+\frac{4}{3}\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(bc-1\right)^2+\frac{\left(b-c\right)^2}{3}+\frac{4}{3}\left(b-1\right)^2+\frac{4}{3}\left(c-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi a = b = c = 1

Vậy ....

27 tháng 8 2018

a) (a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=\)8abc(co si 2 so)

b)(a+b+c)(a^2+b^2+c^2)\(\ge\left(a+b+c\right)\left(ab+bc+ac\right)\)

                                          \(\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)(cosi 3 so)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0