Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)
Cộng vế với vế:
\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)
Hôm qua em không có online. Bài này căng não@@
Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\Rightarrow q=3\) thì \(p^2\ge3q=9\Rightarrow p\ge3\)
Chú ý: \(-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2=(a-b)^2 (b-c)^2 (c-a)^2 \geq 0\)
\(\Rightarrow\) \(1/27(-2p^3-2\sqrt{(p^2-3q)^3}+9pq) \leq r \leq 1/27(-2p^3+2\sqrt{(p^2-3q)^3}+9pq)\)
Hay là: \(\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-9\right)^3}+27p\right)\le r\le\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\)
Nếu \(a\ge b\ge c\Rightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\)
\(\Rightarrow a^2b+b^2c+c^2a\ge\frac{1}{2}\Sigma ab\left(a+b\right)=\frac{1}{2}\left(pq-3r\right)=\frac{3}{2}\left(p-3r\right)\)
Do đó: \(P\ge\frac{1}{2}\left(p-3r\right)+\sqrt[3]{9p}\ge\frac{1}{2}\left(p-\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\right)+3\)
\(\ge\frac{1}{27}p^3-\frac{1}{27}\sqrt{\left(p^2-9\right)^3}+3=f\left(p\right)\). Dễ thấy khi p tăng thì f(p) tăng.
Do đó f(p) đạt giá trị nhỏ nhất khi p đạt giá trị nhỏ nhất. Hay là: \(f\left(p\right)\ge f\left(3\right)=4=VP\)
Trường hợp còn lại tối về em đăng, đang bận!
Nếu \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\le0\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)=-\left|\left(a-b\right)\left(b-c\right)\left(a-c\right)\right|=-\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=-\sqrt{-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2}\)
---------------------------------------------------------------------------------------------------------
Chú ý: \(-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2=(a-b)^2 (b-c)^2 (c-a)^2 \geq 0\)
\(\Rightarrow\) \(1/27(-2p^3-2\sqrt{(p^2-3q)^3}+9pq) \leq r \leq 1/27(-2p^3+2\sqrt{(p^2-3q)^3}+9pq)\)
Hay là: \(\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-9\right)^3}+27p\right)\le r\le\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\)
Ta có: \(2\left(a^2b+b^2c+c^2a\right)=\Sigma ab\left(a+b\right)+\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(=pq-3r-\sqrt{-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2}\)
\(=3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}\)
Do đó: \(a^2b+b^2c+c^2a\)\(=\frac{3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{2}\)
Do đó: \(P\)\(=\frac{3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{6}\)\(+\sqrt[3]{9p}\ge4\)
\(\Leftrightarrow\frac{3p-3r}{6}+\sqrt[3]{9p}\ge4+\)\(\frac{\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{6}\)
Or \(3p-3r+6\sqrt[3]{9p}-24\ge\)\(\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}\)
Vì: \(VT=3p-3r+6\sqrt[3]{9p}-24\ge3p-\frac{pq}{3}+18-24=0\)
Nên bất đẳng thức trên tương đương:
\(\left(3p-3r+6\sqrt[3]{9p}-24\right)^2\ge\) \(-4p^3r + 9p^2 + 54pr - 108 - 27r^2\)
Em chịu thua :( @Akai Haruma @Nguyễn Việt Lâm giúp em với ạ.