K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

Điểm rơi \(a=b=c=1\) nếu thay vào dễ thấy đề sai.

\(3.\sqrt{\frac{9}{\left(1+1\right)^2}+1^2}=\frac{3\sqrt{13}}{2}\)

Nếu giả thiết của em là đúng thì bài tương tự ở đây :D

30 tháng 5 2019

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sum\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(=\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\frac{729}{4\left(a+b+c\right)^2}+\left(a+b+c\right)^2}=\frac{3\sqrt{13}}{2}\)

Is that true ?? \("="\Leftrightarrow a=b=c=1\)

11 tháng 10 2020

THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!

11 tháng 10 2020

vậy em giải giùm chị nhé

8 tháng 2 2021

1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)

Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*

Đẳng thức xảy ra khi t = 3 hay a = b = c = 1

2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Đẳng thức xảy ra khi x = y

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(3\left(a^2+b^2+c^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2\le3.3=9\)hay \(a+b+c\le3\)(do \(a^2+b^2+c^2=3\))

Theo bất đẳng thức Mincopxki và bất đẳng thức Bunyakovsky dạng phân thức, ta được:

\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)

\(\ge\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(\ge\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\)

Đến đây, ta cần chứng minh rằng: \(\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\ge\frac{3\sqrt{13}}{2}\)(*)

Đặt \(t=a+b+c\Rightarrow0< t\le3\)

Khi đó, (*) trở thành \(\sqrt{9\left(\frac{9}{2t}\right)^2+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow9\left(\frac{9}{2t}\right)^2+t^2\ge\frac{117}{4}\)

\(\Leftrightarrow\frac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)(đúng với mọi \(0< t\le3\))

Đẳng thức xảy ra khi a = b = c = 1

12 tháng 8 2019

Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.

12 tháng 8 2019

Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\)\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Bài làm :

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)

\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)

Ta có biến đổi của vế trái :

\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)

\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )

p/s: làm hơi tắt một chút, mong bạn thông cảm.

7 tháng 2 2019

hê lô bạn :))

7 tháng 2 2019

hịu 

ko bt làm

hết

7 tháng 8 2017

cho mình xin đề bài với cho hỏi tại sao có

\(\left(a-b\right)^2\left(17a^2+10ab+9b^2\right)\ge0\)

để suy ra \(\sqrt{2a\left(a+b\right)^3}\le\frac{5}{2}a^2+\frac{3}{2}b^2\)

7 tháng 8 2017

#Thắng: hình như là Ireland MO 2000 hay 2002 j đó , nãy vừa thấy trên fb <(") 

1 tháng 11 2019
https://i.imgur.com/tTHeSNA.jpg
AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{ab+1}+\frac{1}{bc+1}+\frac{1}{ca+1}\geq \frac{9}{ab+1+bc+1+ca+1}=\frac{9}{ab+bc+ac+3}(1)\)

Theo BĐT AM-GM:

\(ab+bc+ac\leq a^2+b^2+c^2\Leftrightarrow ab+bc+ac\leq 3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{ab+1}+\frac{1}{bc+1}+\frac{1}{ca+1}\geq \frac{9}{ab+bc+ac+3}\geq \frac{9}{3+3}=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$