K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.

12 tháng 8 2019

Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\)\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Bài làm :

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)

\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)

Ta có biến đổi của vế trái :

\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)

\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )

p/s: làm hơi tắt một chút, mong bạn thông cảm.

29 tháng 5 2019

Điểm rơi \(a=b=c=1\) nếu thay vào dễ thấy đề sai.

\(3.\sqrt{\frac{9}{\left(1+1\right)^2}+1^2}=\frac{3\sqrt{13}}{2}\)

Nếu giả thiết của em là đúng thì bài tương tự ở đây :D

30 tháng 5 2019

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sum\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(=\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\frac{729}{4\left(a+b+c\right)^2}+\left(a+b+c\right)^2}=\frac{3\sqrt{13}}{2}\)

Is that true ?? \("="\Leftrightarrow a=b=c=1\)

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

NV
12 tháng 10 2020

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(\sqrt{36}-1\right)=10>9=A\)

\(\Rightarrow B>A\)

NV
12 tháng 10 2020

Để biểu thức B có nghĩa thì \(xy\ne0\)

Khi đó ta có:

\(x^3+y^3=2x^2y^2\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)

\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Thay vao đc \(a+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

lm Tương tụ r quy đòng nha bạn

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Ấy ,,,vi diệu ko,,,,rồi thay tiếp vào \(a+2=\sqrt{a}^2+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

bạn lm tương tự r quy đồng,,OK??

~ Hóa ra là tình yêu phút chốc, cứ tin rắng ngày mai người sẽ thấy ~

26 tháng 5 2020

Đặt \(a=\frac{x^2}{z},\text{ }b=\frac{y^2}{z}\) thì \(z=\sqrt{x^4+y^4}\) và x, y, z > 0

Ta cần chứng minh: \(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)

Tương đương: \(\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge\left(\frac{x}{y}-\frac{y}{x}\right)^2+2\sqrt{2}\)

Sau cùng ta cần chứng minh: \(\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\)

Xong.

26 tháng 5 2020

Nhân tiện, với cùng điều kiện như trên thì bất đẳng thức sau đây đúng với mọi \(k\le1\):  

\(\frac{1}{a}+\frac{1}{b}\ge k\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+2\sqrt{2}\)

+) k = 1 đã được chứng minh.

+) k = 0 quá quen thuộc.

+) k < 0 thì yếu hơn k = 0.

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

NV
12 tháng 10 2020

1.

\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)

\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)

b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))

2.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ

\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn

\(\Rightarrow a+b+c\) chẵn

- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)

Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)

- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)

Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3

\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)

- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư

\(\Rightarrow\) \(a+b+c⋮̸3\)

Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn

Vậy \(a+b+c⋮54\)

NV
12 tháng 10 2020

2b

Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý

Pt như nguyên mẫu được biến đổi thành:

\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)

Hiển nhiên vô nghiệm

3.

\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\ge8\)

NV
18 tháng 10 2019

Cho dễ nhìn thì \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Rightarrow xy+yz+zx=2\)

\(VT=\sum\frac{x}{x^2+2}=\sum\frac{x}{x^2+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VP=\frac{4}{\sqrt{\left(x+y\right)\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(z+x\right)}}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=VT\) (đpcm)