Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có a - (-b + c) = d
a + b - c = d
a + b - c - b = d - b
a - c = -b + d (đpcm)
Giải
Ta có : a + b = c + d suy ra a = c + d - b
Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :
\(b\left(c+d-b\right)+1=cd\)
\(\Leftrightarrow cb+bd-b^2-cd=-1\)
\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)
\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)
\(\Rightarrow b+d=-\left(c-b\right)\)
\(\Rightarrow b+d=-c+b\)
\(\Rightarrow c=d\left(đpcm\right)\)
cho a,b,c,d thuộc Z . a+b=c+d vad ab+1=cd .chứng tỏ rằng c= d
các bạn giúp mình với . thanks các bạn
a) \(a\cdot\left(b-c\right)-a\cdot\left(b+d\right)\)
\(=a\cdot b-a\cdot c-a\cdot b+a\cdot d\)
\(=0-a\cdot\left(c+d\right)\)
\(=-a\cdot\left(c+d\right)\)
Lời giải:
$a-(b-d)=c$
$\Rightarrow b-d=a-c$
Còn $a+c=b+d$ không có cơ sở để chứng minh bạn nhé.