K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Đặt biểu thức đã cho là $A$.
Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\geq 2\sqrt{(a^2+b^2)(c^2+d^2)}\)

Mà:
\((a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=(ac-bd)^2+(ad+bc)^2=1+(ad+bc)^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 2\sqrt{1+(ad+bc)^2}\)

\(\Rightarrow A\geq 2\sqrt{1+(ad+bc)^2}+ad+bc\). Đặt $ad+bc=t$ thì: $A\geq 2\sqrt{t^2+1}+t$.

Áp dụng BĐT Bunhiacopxky:

\((t^2+1)\left[(\frac{-1}{2})^2+(\frac{\sqrt{3}}{2})^2\right]\geq (\frac{-t}{2}+\frac{\sqrt{3}}{2})^2\)

\(\Leftrightarrow \sqrt{t^2+1}\geq |\frac{-t}{2}+\frac{\sqrt{3}}{2}|\)

\(\Rightarrow A\geq 2\sqrt{t^2+1}+t\geq 2|\frac{-t}{2}+\frac{\sqrt{3}}{2}|+t\geq 2(\frac{-t}{2}+\frac{\sqrt{3}}{2})+t=\sqrt{3}\) (đpcm)

17 tháng 5 2020

Dấu bằng xảy ta khi nào vậy bạn

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

11 tháng 10 2020

THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!

11 tháng 10 2020

vậy em giải giùm chị nhé

10 tháng 5 2017

oh, bunhia copxki kìa :V lâu lắm mới thấy đăng toán lớp 9

a) \(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2d^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(luôn đúng)

b) từ câu a ta có: 

\(\left(ac+bd\right)^2+\left(ac-bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Đẳng thức xảy ra \(\Leftrightarrow\left(ac-bd\right)^2=0\Leftrightarrow ac=bd\)

14 tháng 7 2020

1/ .............. a=<b=<c=<d và a+d=b+c