Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(ac\right)^2+\left(bd\right)^2+2abcd+\left(ad\right)^2-2abcd+\left(bc\right)^2\)=\(\left(ac\right)^2+\left(bc\right)^2+\left(ad\right)^2+\left(bd\right)^2\)
Vp=\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
=> 2 vế = nhau đpcm
Ta có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right).\left(c^2+d^2\right)\)
<=>\(a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
<=>\(2abcd\le a^2d^2+b^2c^2\)
<=>\(0\le a^2d^2+b^2c^2-2abcd\)
<=>\(0\le\left(ad-bc\right)^2\)(thoả mãn)
Dấu "=" xảy ra khi: \(ad-bc=0=>ad=bc=>\frac{a}{b}=\frac{c}{d}\)
=>ĐPCM
a) Ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2b^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) theo a) \(\Rightarrow\)\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Dấu bằng xảy ra khi ad=bc => a/b=c/d
a,\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b,Xét hiệu
\(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2=\left(ad-bc\right)^2\ge0\)
\(\Rightarrow\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2+2abcd-2abcd=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2=0\)
\(\Leftrightarrow0=0\)( luôn đúng )
Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra \(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
a. Đặt VP = ( a2 + b2)(c2 + d2)
VT = (ac + bd)2 + ( ad - bc)2 = a2c2 + 2abcd + b2d2 + a2d2 - 2abcd + b2c2 = a2c2 + b2d2 + a2d2 + b2c2 = a2(c2 + d2) + b2 (c2 + d2) = ( c2 + d2) (a2 + b2 ) = VP ( ĐPCM)
Xíu mình nghiên cứu câu b nha!
theo phan a \(\Rightarrow\text{(ac+bd)^2\le(a^2+b^2)(c^2+d^2)}\)
dau "=" xay ra <=> ad-bc=0 <=>\(\frac{a}{b}=\frac{c}{d}\)
a) Cách lầy lội nhất khai triển hết ra :|
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
Biến đổi vế traias ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=VP\)
=>đpcm
b)Có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2\le0\)
\(\Leftrightarrow-\left(a^2d^2-2abcd+b^2c^2\right)\le0\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\), luôn luôn đúng
=>đpcm
a)Ta có:VT=(ac+bd)2+(ad-bc)2=a2c2+b2d2+2acbd+a2d2+b2c2-2adbc
=a2c2+b2c2+b2d2+a2d2
=(a2+b2)(c2+d2)(ĐPCM)
b)theo câu a) ta có:(ac+bd)2 ≤(a2+b2)(c2+d2)(vì (ad-bc)2 ≥0)
Dấu bằng xảy ra khi:ad=bc
oh, bunhia copxki kìa :V lâu lắm mới thấy đăng toán lớp 9
a) \(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2d^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(luôn đúng)
b) từ câu a ta có:
\(\left(ac+bd\right)^2+\left(ac-bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Đẳng thức xảy ra \(\Leftrightarrow\left(ac-bd\right)^2=0\Leftrightarrow ac=bd\)