Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a3 + b3 = 2(c3 - 8d3)
<=> a3 + b3 = 2c3 - 16d3
<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3) \(⋮3\)(1)
Xét hiệu a3 + b3 + c3 + d3 - (a + b + c + d)
= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)
= (a - 1)a(a + 1) + (b - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp)
=> a3 + b3 + c3 + d3 - (a + b + c + d) \(⋮\)3 (2)
Từ (1) và (2) => a + b + c + d \(⋮3\)
Ta có : \(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)
z = \(\sqrt{z^2}\le\frac{z^2+1}{2}\)
=> x + y + z \(\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=\frac{ }{ }\)
a: Để A là số nguyên thì \(x^3-3x^2-x^2+3x+x-3-7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
b: Đề sai rồi bạn
b,Cho a,b,c,d là các số nguyên thỏa mãn :5(a^3+b^3)=13(c^3+d^3).Chứng minh (a+b+c+d) cchia hết cho 6
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Bài làm
\(a^3+b^3-2808^{2017}=2c^3-16d^3\)
\(\Rightarrow a^3+b^3+16d^3-2c^3=2808^{2017}⋮3\)
\(\Rightarrow a^3+b^3+d^3+c^3+15d^3-3c^3⋮3\)
\(\Leftrightarrow\left(a^3+b^3+c^3+d^3\right)+3\left(5d^3-c^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)
Xét:\(k^3-k\left(k\in Z\right)=k\left(k^2-1\right)=\left(k-1\right)k\left(k+1\right)\)
Mà: \(k-1;k;k+1\)là 3 số nguyên liên tiếp
\(\Rightarrow k^3-k⋮3\Rightarrow\left(a^3-a+b^3-b+c^3-c+d^3-d⋮3\right)\)
\(\Rightarrow a+b+c+d⋮3\left(vì:a^3+b^3+c^3+d^3⋮3\right)\)
MN xem thánh copy của năm Thiên thần nhỏ