K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Bài làm

\(a^3+b^3-2808^{2017}=2c^3-16d^3\)

\(\Rightarrow a^3+b^3+16d^3-2c^3=2808^{2017}⋮3\)

\(\Rightarrow a^3+b^3+d^3+c^3+15d^3-3c^3⋮3\)

\(\Leftrightarrow\left(a^3+b^3+c^3+d^3\right)+3\left(5d^3-c^3\right)⋮3\)

\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)

Xét:\(k^3-k\left(k\in Z\right)=k\left(k^2-1\right)=\left(k-1\right)k\left(k+1\right)\)

Mà: \(k-1;k;k+1\)là 3 số nguyên liên tiếp

\(\Rightarrow k^3-k⋮3\Rightarrow\left(a^3-a+b^3-b+c^3-c+d^3-d⋮3\right)\)

\(\Rightarrow a+b+c+d⋮3\left(vì:a^3+b^3+c^3+d^3⋮3\right)\)

26 tháng 8 2019

MN xem thánh copy của năm Thiên thần nhỏ

24 tháng 7 2021

Ta có a3 + b3 = 2(c3 - 8d3

<=> a3 + b3 = 2c3 - 16d3

<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3\(⋮3\)(1) 

Xét hiệu a3 + b3 + c3  + d3 - (a + b + c + d)

= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)

= (a - 1)a(a + 1)  + (b  - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp) 

=>  a3 + b3 + c3  + d3 - (a + b + c + d) \(⋮\)3 (2) 

Từ (1) và (2) => a + b + c + d \(⋮3\)

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

2 tháng 9 2018

Ta có : \(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)

z = \(\sqrt{z^2}\le\frac{z^2+1}{2}\)

=> x + y + z \(\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=\frac{ }{ }\)

31 tháng 7 2017

\(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)

\(z=\sqrt{z^2}\le\frac{z^2+1}{2}\)

\(\Rightarrow x+y+z\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=2+xy\)

a: Để A là số nguyên thì \(x^3-3x^2-x^2+3x+x-3-7⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{4;2;10;-4\right\}\)

b: Đề sai rồi bạn

 

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)