Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)
\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
\(\Rightarrow A=1+1+1+1=4\)
số đo slaf
4
nhe sbn
bài dài
lắm mình
vhir tiện ghi
thế này thôi
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
+ Ta có
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{\left(a+b\right)+2\left(c+d\right)}=\frac{1}{3}\)
\(\Rightarrow3\left(a+b\right)=\left(a+b\right)+2\left(c+d\right)\)
\(\Rightarrow2\left(a+b\right)=2\left(c+d\right)\Rightarrow a+b=c+d\)
Tương tự ta cũng c/m được
\(b+c=a+d\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Bạn tham khảo câu hỏi tương tự.
Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM
Đề đúng
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+c+b}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+c+b}\)
=> b+c+d = a+c+d = a+b+d = a+c+b
=> a=b=c=d
=> GTBT = 1+1+1+1 =4
Giải: Ta có :
\(\frac{a+b+c-2011d}{d}=\frac{b+c+d-2011a}{a}=\frac{c+d+a-2011b}{b}=\frac{d+a+b-2011c}{c}\)
=> \(\frac{a+b+c}{d}-2011=\frac{b+c+d}{a}-2011=\frac{c+d+a}{b}-2011=\frac{d+a+b}{c}-2011\)
=> \(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}\)
=> \(\frac{a+b+c}{d}+1=\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1\)
=> \(\frac{a+b+c+d}{d}=\frac{b+c+d+a}{a}=\frac{c+d+a+b}{b}=\frac{d+a+b+c}{c}\)
TH1: a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
khi đó, ta có : S = \(\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}\)
= \(-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
= -4
TH2 : a + b + c + d \(\ne\)0
=> a = b = c = d
khi đó, ta có : S = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)
= 1 + 1 + 1 + 1
= 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)
Vì a+b+c+d khác 0
=> b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
Khi đó:
a + b = c+d
b+c= (a+d)
c+d=a+b
d+a=b+c
=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
=2 tick mk nha