K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Cho a + b + c = 0

Ta có : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

⇒ 0 = a2 + b2 + c2 + 2ab + 2bc + 2ac

⇒ a2 + b2 + c2 = - 2(ab + bc + ac)

⇒ (a2 + b2 + c2)2 = 4(ab + bc + ac)2

⇒ a4 + b4 + c4 + 2(a2b2 + a2c2 + b2c2) = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)]

⇒ a4 + b4 + c4 = 4(a2b2 + b2c2 + a2c2 + 0) - 2(a2b2 + b2c2 + a2c2)

⇒ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

14 tháng 3 2018

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

1 tháng 10 2017

tự làm đi , đồ ăn sẵn

1 tháng 10 2017

a)\(VP=\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)=a2b2+b2c2+c2a2+2abc.0=a2b2+b2c2+c2a2=VP

Vậy ta có đpcm

18 tháng 6 2017

Ta có:

(a + b + c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = -2(ab + bc + ca)

=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + ca2b)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) + 8abc(a + b + c)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (vì a + b + c = 0) (1)

Có: \(\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2abc^2\right)\\2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(2\right)\\a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)}{2}\left(3\right)\end{matrix}\right.\)

Từ (1); (2) và (3) ta có đpcm

4 tháng 12 2016

Câu a/ Thì chứng minh ở dưới rồi nhé e

b/ Ta cần chứng minh

\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)

\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)

=> ĐPCM

4 tháng 12 2016

c/ Ta có

\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)

Cái này là áp dụng câu a vô nhé e

17 tháng 6 2016

undefined

17 tháng 6 2016

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm