Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(a + b + c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> a2 + b2 + c2 = -2(ab + bc + ca)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2
=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + ca2b)
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) + 8abc(a + b + c)
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (vì a + b + c = 0) (1)
Có: \(\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2abc^2\right)\\2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(2\right)\\a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)}{2}\left(3\right)\end{matrix}\right.\)
Từ (1); (2) và (3) ta có đpcm
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Câu a/ Thì chứng minh ở dưới rồi nhé e
b/ Ta cần chứng minh
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)
\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)
=> ĐPCM
c/ Ta có
\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)
Cái này là áp dụng câu a vô nhé e
Ta có:
a)
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)
\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)
c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)
\(=a^4+b^4+c^4\)
\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
\(b^3+c^3\ge bc\left(b+c\right)\)
\(c^3+a^3\ge ca\left(c+a\right)\)
Cộng từng vế các bđt trên ta được
\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Bây giờ ta cm:
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Bất đẳng thức trên luôn đúng
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c
a + b + c = 0 => (a + b + c)2 = 0 => a2 + b2 + c2 = -2(ab + bc + ca) (1)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2 (2) => a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)).
=> a4 + b4 + c4 = 2a4b2 + 2b2c2 + 2c2a2 + 8abc(a + b + c)
a) => a4 + b4 + c4 = 2(a4b2 + b2c2 + c2a2) (ĐPCM - a)
b) Từ (1) => 2(ab + bc + ca) = -(a2 + b2 + c2 )
=> 4(ab + bc + ca)2 = (a2 + b2 + c2 )2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2.
Thay từ (a) 2a2b2 + 2b2c2 + 2c2a2 = a4 + b4 + c4
=> 4(ab + bc + ca)2 = 2(a4 + b4 + c4)
Hay a4 + b4 + c4 = 2(ab + bc + ca)2 (ĐPCM - b)
c) Từ (2) (a2 + b2 + c2)2 = 4(ab + bc + ca)2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)) = 4(a4b2 + b2c2 + c2a2)+ 8abc(a + b + c)
=> (a2 + b2 + c2)2 = 4(a4b2 + b2c2 + c2a2) = 2(a4 + b4 + c4) (Từ a)
Hay a4 + b4 + c4 = 1/2 * (a2 + b2 + c2)2 (ĐPCM - c).
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)