\(\in\)N*, x+y+z=5,

biết S1=\(\frac{b}{a}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

ta có tổng của hai số  nghich dao luon lon hoac bang 2

lấyS1+S2+S3=

̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016

vậy S1+S2+S3 lớn hơn hoặc bằng 2016

9 tháng 4 2018

ta có tổng của hai số  nghich dao luon lon hoac bang 2

lấyS1+S2+S3=

̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016

vậy S1+S2+S3 lớn hơn hoặc bằng 2016


 

19 tháng 5 2015

\(\Rightarrow S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                                     \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                                     \(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)

Ta có: Tổng hai số nghịch đảo luôn lớn hơn hoặc bằng 2 nên:

\(\frac{b}{a}+\frac{a}{b}\ge2\)   ;   \(\frac{c}{b}+\frac{b}{c}\ge2\)   ;     \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow S_1+S_2+S_3\ge x.2+y.2+z.2=2.\left(x+y+z\right)=2.5=10\)

   Vậy suy ra điều phải chứng minh.

18 tháng 7 2017

tại sao là 2.5 vậy

s1+s2+s3=b/a *x+c/a *z+a/b *x+c/b *y+a/c *z+b/c *y

=(b/a *x+a/b *x)+(c/b *y+b/c *y)+(a/c *z+c/a *z)

=(b/a+a/b)*x+(c/a+a/c)*z+(c/b+b/c)*y lớn hơn hoặc bằng 2*x+2*y+2*z=2*(x+y+z)=2*5=10

suy ra ĐPCM

6 tháng 5 2016

\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                             \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                              \(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)

(*)Ta cần CM bất đẳng thức sau: \(\frac{a}{b}+\frac{b}{a}\ge2\)

Nhân ab vào 2 vế,ta được:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Rightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\left(a-b\right)^2\ge0\)

=>BĐT đúng với mọi a;b

Tương tự,ta cũng có: \(\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

Do đó \(S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\left(đpcm\right)\)

7 tháng 4 2015

S1 + S2 + S3 = \(\left(\frac{b}{a}.x+\frac{c}{d}.z\right)\) + \(\left(\frac{a}{b}.x+\frac{c}{b}.y\right)\) + \(\left(\frac{d}{c}.z+\frac{b}{c}.y\right)\)

\(=\left(\frac{b}{a}+\frac{a}{b}\right).x+\left(\frac{c}{d}+\frac{d}{c}\right).z+\left(\frac{c}{b}+\frac{b}{c}\right).y\ge2\left(x+y+z\right)=2.5=10\)

Vì \(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2;\left(\frac{c}{d}+\frac{d}{c}\right)\ge2;\left(\frac{c}{b}+\frac{b}{c}\right)\ge2\)

Vậy ........ dấu = xảy ra khi a = b = c = d

4 tháng 5 2019

cho a,b,c mà lại có d?

1 tháng 5 2017

Ta có: \(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

\(=\frac{b}{a}x+\frac{c}{a}z+\frac{a}{b}x+\frac{c}{b}y+\frac{a}{c}z+\frac{b}{c}y\)

\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

\(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)

Vì \(\frac{b}{a}+\frac{a}{b}\ge2;\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.5=10\)

Vậy S1 + S2 + S3 \(\ge\)10

1 tháng 5 2017

1.

S1+S2+S3\(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)            (1)
Xét \(\left(u-t\right)^2=\left(u-t\right)\left(u-t\right)=u^2+t^2-2ut\)
Vì \(\left(u-t\right)^2\ge0\Rightarrow u^2+t^2-2ut\ge0\Rightarrow u^2+t^2\ge2ut\)
Áp dụng vào biểu thức (1) có 
S1+S2+S3\(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)  \(\ge x\cdot2\sqrt{\frac{ab}{ba}}+y\cdot2\sqrt{\frac{bc}{cb}}+z\cdot2\sqrt{\frac{ac}{ca}}=2x+2y+2z=2\left(x+y+z\right)=2\cdot5=10\)
Vậy    S1+S2+S3\(\ge10\)(đpcm)
Dấu "=" xảy ra khi a=b=c (> 0)
2.

\(M=\frac{21x+3}{6x+4}=\frac{3\left(7x+1\right)}{2\left(3x+2\right)}\)
Để M rút gọn được thì ta có 4 trường hợp sau
*TH1: \(3⋮\left(3x+2\right)\)
\(\Rightarrow\left(3x+2\right)\inƯ\left(3\right)=\left\{1;3\right\}\)\(\Rightarrow x=\left\{-\frac{1}{3};\frac{1}{3}\right\}\left(loại\right)\)
*TH2: \(\left(7x+1\right)⋮2\Rightarrow\left(7x+1\right)\)là số tự nhiên chẵn 
Cho (7x+1) = 2k \(\left(k\in N\right)\) =>  \(x=\frac{2k-1}{7}\)
Vậy với x = \(\frac{2k-1}{7}\)và (2k-1) là B(7)  thì M có thể rút gọn được
*TH3: \(3\left(7x+1\right)⋮\left(3x+2\right)\Leftrightarrow21x+14-11⋮\left(3x+2\right)\Rightarrow\left(3x+2\right)\inƯ\left(11\right)=\left\{1;11\right\}\)
\(\Rightarrow x=\left\{-\frac{1}{3};3\right\}\)
Vậy x=3

*TH4  ( mẫu số lúc này chia hết cho tử, bạn tự khai triển ra sẽ có kết quả như TH3)
Kết luận : với khi x=3 hoặc x = \(\frac{2k-1}{7}\)và (2k-1) là B(7)  thì M có thể rút gọn được

6 tháng 5 2016

Ta có:

\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                        \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                       \(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)

Ta cần c/m bất đẳng thức : \(\frac{a}{b}+\frac{b}{a}>=2\)

Nhân ab vào 2 vế ta có:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab>=2ab=>\frac{a^2b}{b}+\frac{b^2a}{a}>=2ab=>a^2+b^2>=2ab\)

\(=>a^2+b^2-2ab>=0=>\left(a-b\right)^2>=0\)

=>bất đẳng thức đúng với mọi a;b

chứng minh tương tự với \(\frac{b}{c}+\frac{c}{b}>=2;\frac{a}{c}+\frac{c}{a}>=2\);Cộng từng vế các BĐT,ta thu được:

\(S_1+S_2+S_3>=2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\)   (đpcm)

6 tháng 5 2016

sao hông có ai trả lời hết vậy?PLEASE

gianroi

4 tháng 5 2016

 nhung ma ko cothoi gian giai

4 tháng 5 2016

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)