K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 8 2019
\(S_1+S_2+S_3=\left[\frac{b}{a}x+\frac{c}{a}z\right]+\left[\frac{a}{b}x+\frac{c}{b}y\right]+\left[\frac{a}{c}z+\frac{b}{c}y\right]\)
\(=\left[\frac{b}{a}x+\frac{a}{b}x\right]+\left[\frac{c}{b}y+\frac{b}{c}y\right]+\left[\frac{c}{a}z+\frac{a}{c}z\right]\)
\(=\left[\frac{b}{a}+\frac{a}{b}\right]x+\left[\frac{c}{b}+\frac{b}{c}\right]y+\left[\frac{c}{a}+\frac{a}{c}\right]z\)
\(S_1+S_2+S_3\ge2x+2y+2z=2\left[x+y+z\right]=2\cdot5=10\)
Vậy : \(S_1+S_2+S_3\ge10\)
11 tháng 4 2015
Lấy S1 + S2 + S3, thay phép tính vào, sử dụng tính chất phân phối
KẾT QUẢ: S1 + S2 + S3 >, = 2.(X + Y+ Z) = 2.5 = 10
\(\Rightarrow S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)
Ta có: Tổng hai số nghịch đảo luôn lớn hơn hoặc bằng 2 nên:
\(\frac{b}{a}+\frac{a}{b}\ge2\) ; \(\frac{c}{b}+\frac{b}{c}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow S_1+S_2+S_3\ge x.2+y.2+z.2=2.\left(x+y+z\right)=2.5=10\)
Vậy suy ra điều phải chứng minh.
tại sao là 2.5 vậy