Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy dạng phân thức :
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{9}{ab+bc+ac}\)
\(\Rightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)
\(\Leftrightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+ac+bc}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)
\(\Rightarrow\frac{7}{ab+bc+ac}\ge21\left(1\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\)
\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge21+9=30\left(đpcm\right)\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
#)Trả lời :
Bạn tham khảo nha : Câu hỏi của Nguyễn Trương Hoài Nam - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/66344373938.html
Bạn vô câu hỏi tương tự ý cho nhanh, ngay đầu bảng luôn ^^
#~Will~be~Pens~#
1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)
Mà \(ab+bc+ca=3\). Do đó \(ab\ge1\)
Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)
Và \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)
\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)
và \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
Nên \(a+b+c\ge3\ge3abc\)
Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được
\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Do đó ta được
\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự ta được
\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)
Cộng theo vế các BĐT trên ta được
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM
ĐẲng thức xảy ra khi và chỉ khi a = b = c >0
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
Áp dụng Cauchy Schwarz ta dễ có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\right)+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=30\)
Đẳng thức xảy ra tại a=b=c=1/3
Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)