Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với các số dương x;y ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
Áp dụng:
\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)
\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)
\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(P_{max}=1\) khi \(a=b=c=1\)
đặt: x = b + c - a > 0
y = a + c - b > 0
z = a + b - c > 0
\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)
\(b=\frac{\left(x+z\right)}{2}\)
\(c=\frac{\left(x+y\right)}{2}\)
\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)
\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)
\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng các BĐT trên, ta được:
\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).
Sử dụng bất đẳng thức \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với ba số \(a,b,c\) và ba số dương \(x,y,z\) bất kỳ với chú ý rằng \(a^2b^2c^2=1\), ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{b^2c^2}{a\left(b+c\right)}+\frac{c^2a^2}{b\left(c+a\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\) \(\left(1\right)\)
Đặt \(x=ab;\) \(y=bc;\) và \(z=ca\) thì \(xyz=1\) \(\left(2\right)\) với \(x;\), \(y;\) và \(z\) \(>0\)
Khi đó áp dụng BĐT Cauchy cho bộ ba số nguyên dương \(x;\), \(y;\) và \(z\), ta được:
\(x+y+z\ge3\sqrt[3]{xyz}\) \(\Leftrightarrow\) \(x+y+z\ge3\) (do \(\left(2\right)\)), tức \(ab+bc+ca\ge3\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(3\right)\) ta suy ra \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c=1\)
thông điệp nhỏ :
hãy tích nếu như ko muốn tích
ai tích mình tích lại nh nha
a+b+c=0
a+b=-c
(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3=-3a^2b-3ab^2
a^3+b^3+c^3=-3ab(-c)
a^3+b^3+c^3=3abc
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+zx=1\)
Ta có:
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge1\)
để ý \(x^2+y^2+z^2\ge xy+yz+zx\) nha mọi người:)