K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

đặt: x = b + c - a > 0

       y = a + c - b > 0

       z = a + b - c > 0

\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)

    \(b=\frac{\left(x+z\right)}{2}\)

   \(c=\frac{\left(x+y\right)}{2}\)

\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)

\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)

\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)

áp dụng BĐT Cauchy-Schwarz, ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng các BĐT trên, ta được:

\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).

27 tháng 3 2019

Vì sao a=\(\frac{y+z}{2}\)

6 tháng 8 2018

Đặt b+c-a=x,c+a-b=y,a+b-c=z (x,y,z>0 vì a,b,c là độ dài 3 cạnh của 1 tam giác)

Ta có: \(x+y=b+c-a+c+a-b=2c\Rightarrow c=\frac{x+y}{2}\)

Tương tự: \(a=\frac{y+z}{2};b=\frac{z+x}{2}\)

Do đó: \(VT=\frac{\frac{y+z}{2}}{x}+\frac{\frac{z+x}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\)

\(\Leftrightarrow2VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)\ge2+2+2=6\) (áp dụng BĐT m/n+n/m >= 2)

\(\Leftrightarrow VT\ge3=VP\)

Dấu "=" xảy ra <=> x=y=z <=> a=b=c

P/s: đây là phương pháp đặt ẩn nhé

31 tháng 8 2018

Đặt \(b+c-a=x,c+a-b=y,a+b-c=z\)(\(x,y,z>0\)vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác)

Ta có: \(x+y=b+c-a+c+a-b=2c\Rightarrow c=\frac{x+y}{2}\)

Tương tự: \(a=\frac{y+z}{2};b=\frac{z+x}{2}\)

Do đó: \(VT=\frac{\frac{y+z}{2}}{x}+\frac{\frac{z+x}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\)

\(\Leftrightarrow2VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)\ge2+2+2=6\)

(áp dụng BĐT \(\frac{m}{n}+\frac{n}{m}>=2\))

\(\Leftrightarrow VT\ge3=VP\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c\)

P/c: Đây là phương pháp đặt ẩn nhé !

3 tháng 11 2015

<=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{a}{c}-\frac{c}{b}-\frac{b}{c}\ge0\)

<=> \(\frac{a-c}{b}+\frac{c^2-a^2}{ac}\ge0\)

<=>\(\frac{a^2c-ac^2+bc^2-a^2b}{abc}\ge0\)

Vì abc luôn dương vì a,b,c là độ dài của cạnh tam giác 

=> để bất đẳng thức trên đúng : \(a^2c-ac^2+bc^2-a^2b\ge0\)

Vì a,b,c là 3 cạnh trong tam giác nên

 \(a\ge b-c\),... Tương tự

<=> \(a^2c-ac^2+bc^2-a^2b=\left(b-a\right)c^2+\left(c-b\right)a^2\ge\left(b-a\right)^2c+\left(c-b\right)^2a\ge0\)

=> ĐPCM

21 tháng 3 2017

Xin lỗi nhé, nãy đang vội thấy 3 p/s nghĩ luôn ra mà ko kịp soát

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế 3 BĐT ta có: 

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi \(a=b=c\)

21 tháng 3 2017

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\)

\(\ge\frac{9}{a+b-c+b+c-a+a+c-b}=\frac{9}{a+b+c}\left(1\right)\)

Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(2\right)\)

Từ (1) và (2) ta  có ĐPCM

30 tháng 3 2018

Ta có : \(\frac{1}{x}\)\(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)

Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y

Áp dụng bất đẳng thức trên ta được:

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0                                                                                                                                                                                                               bđt \(\Delta\))

Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)

                       \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế 3 bđt trên ta được:

2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

CHÚC BẠN HỌC TỐT!

30 tháng 3 2018

Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ

Phần cuối bạn làm như thế này nhé:

C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)

                         \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

                                                        \(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

                

CHÚC BẠN HỌC TỐT!

12 tháng 3 2017

LÀM BẠN NHA