K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Áp dụng BĐT cô-si, ta có

\(\left(a+b+c\right)^2\ge4a\left(b+c\right);\left(b+c\right)^2\ge4bc\)

Nhân từng vế, ta có \(\left(a+b+c\right)^2\left(b+c\right)^2\ge4a\left(b+c\right).4bc\Rightarrow b+c\ge16abc\left(ĐPCM\right)\)

dấu = xảy ra <=>\(\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

^_^

21 tháng 1 2018

Câu trả lời hay nhất:  áp dụng BĐT Côsi cho hai số không âm có 
1 = (a + b+ c)^2 >= 4a(b + c) 
<=> b +c >= 4a(b + c)^2 
Mà (b + c)^2 >= 4bc 
Vậy b + c >= 4a.4bc = 16abc

p/s:kham khảo

20 tháng 3 2020

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét 2 trường hợp :

+) TH : \(\frac{a^2+16bc}{b^2+c^2}\ge\frac{a^2}{b^2}\)

Dễ thấy \(\frac{b^2+16ac}{c^2+a^2}\ge\frac{b^2}{a^2}\)\(\frac{c^2+16ab}{a^2+b^2}\ge\frac{16ab}{a^2+b^2}\)

Cần chứng minh : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{16ab}{a^2+b^2}\ge10\)

\(\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)+\frac{16}{\frac{a^2+b^2}{ab}}\ge12\)\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+\frac{16}{\frac{a}{b}+\frac{b}{a}}\ge12\)

Đặt \(\frac{a}{b}+\frac{b}{a}=t\)( t \(\ge\)2 )

BĐT trở thành : \(t^2+\frac{16}{t}\ge12\Leftrightarrow t^2+\frac{8}{t}+\frac{8}{t}\ge12\)

Ta có : \(t^2+\frac{8}{t}+\frac{8}{t}\ge3\sqrt[3]{t^2.\frac{8}{t}.\frac{8}{t}}=12\)

+) TH \(\frac{a^2+16bc}{b^2+c^2}< \frac{a^2}{b^2}\Leftrightarrow b^2\left(a^2+16bc\right)< a^2\left(b^2+c^2\right)\)

\(\Leftrightarrow16b^3c< a^2c^2\Leftrightarrow16b^3< a^2c\)

Do \(b\ge c\)nên \(16b^3< a^2c\le a^2b\Rightarrow a^2>16b^2\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}=16+\frac{\left(a^2-16b^2\right)+16c\left(b-c\right)}{b^2+c^2}>16\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}+\frac{b^2+16ac}{c^2+a^2}+\frac{c^2+16ab}{a^2+b^2}>\frac{a^2+16bc}{b^2+c^2}>16>10\)

Bài toán được chứng minh . Dấu "=" xảy ra khi a = b , c = 0 và các hoán vị

P/s : bài này ở trong sách gì mà mk quên rồi

4 tháng 3 2024

Mình thấy trong sách "Bất đẳng thức cực trị 8 9" của Võ Quốc Bá Cẩn đấy

14 tháng 3 2019

Ta có BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) (tự c/m)

Áp dụng vào,ta có: \(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4\left(c+a\right)}+\frac{ab}{4\left(c+b\right)}\) (Làm tắt,ráng hiểu)

Chứng minh tương tự và cộng theo vế:

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{c}{4}=\frac{a+b+c}{4}=\frac{1}{4}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
4 tháng 1 2021

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

NV
4 tháng 1 2021

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

14 tháng 5 2021

DEO AI BT DAU A.Zay nen tu lam nha.