K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2019

\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)

\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)

Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)

\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)

\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)

\(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)

\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)

\(\Rightarrow P\le2.\frac{5}{2}+2=7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)

3 tháng 6 2019

Cảm ơn ạ

30 tháng 7 2019

\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)

Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)

\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)

\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)

hay c2 + b2 = -2?? hay là mình làm sai nhì?

1 tháng 8 2019

\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)

\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)

\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)

\(\Rightarrow a=0,b=1,c=-1\)

\(\Rightarrow A=2\)

1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/

16 tháng 4 2019

đã có lời giải đâu

28 tháng 7 2019

\(A=\left(1+b^2+a^2+a^2b^2\right).\left(1+c^2\right)\)

\(=1+a^2+b^2+c^2+a^2c^2+b^2c^2+a^2b^2+a^2b^2c^2\)

\(=1+\left(a+b+c\right)^2-2.\left(ab+bc+ac\right)+\left(ab+bc+ac\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

Thay ab+bc+ac=1 vào A, ta có:

\(A=1+\left(a+b+c\right)^2-2+1-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c-abc\right)^2\)

Vì a,b,c thuộc Z 

\(\Rightarrow\left(a+b+c-abc\right)^2\)là số chính phương

28 tháng 7 2019

\(\hept{\begin{cases}\left(1+a^2\right)=\left(ab+bc+ca+a^2\right)=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\\\left(1+b^2\right)=\left(ab+bc+ca+b^2\right)=a\left(b+c\right)+b\left(b+c\right)=\left(a+b\right)\left(b+c\right)\\\left(1+c^2\right)=\left(ab+bc+ca+c^2\right)=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\end{cases}}\)

\(\Rightarrow A=\text{[}\left(a+b\right)\left(b+c\right)\left(c+a\right)\text{]}^2\Rightarrow\text{đ}pcm\)

30 tháng 7 2019

Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)

\(\Leftrightarrow a+b+c=0\left(1\right)\)

Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)

Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)

Gọi nghiệm của phương trình 6x2+20x+15=0 là t1và t2 .

Nếu ta giả sử rằng a=tthì b=\(\frac{1}{t_2}\)

Lúc này biểu thức đã cho trở thành :

\(\frac{\frac{1}{t^3_2}}{\frac{t_1}{t^2_2}-9\left(\frac{t_1}{t_2}+1\right)^3}\)\(=\frac{1}{t_1.t_2-9\left(t_1+t_2\right)^3}\)

Bây giờ chỉ cần thay các giá trị t1+t2 và t1.t2 từ phương trình bậc 2 vào biểu thức trên để có đáp án.

P/s : nếu chưa học pt bậc 2 thì k làm được đâu

17 tháng 3 2020

chiuj^_^

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)