\(a+b+c=0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

\(A=\left(b+c\right)^2+b^2+c^2=2b^2+2c^2+2bc=2\left(b^2+bc+c^2\right)\) (tự hiểu nhé)

Mà \(a^2=2\left(a+c+1\right)\left(a+b-1\right)=2a^2+2\left(ab+bc+ca\right)+2\left(b-c\right)-2\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+2bc-2=0\) (*)

\(\Leftrightarrow2bc=2-a^2-2a\left(b+c\right)=2-\left(b+c\right)^2+2\left(b+c\right)^2\) (mấy cái này là từ a + b + c =0 suy ra a = -(b+c) suy ra a2 = [-(b+c)]2 = (b+c)2 thôi!)

\(\Leftrightarrow\left(b+c\right)^2-2bc=-2\)

hay c2 + b2 = -2?? hay là mình làm sai nhì?

1 tháng 8 2019

\(a^2=2\left(a+c+1\right)\left(a+b-1\right)\)

\(\Leftrightarrow\left(b+c\right)^2=\left(b-1\right)\left(c+1\right)\)

\(\Leftrightarrow\left(b-1\right)^2+\left(c+1\right)^2=0\)

\(\Rightarrow a=0,b=1,c=-1\)

\(\Rightarrow A=2\)

30 tháng 7 2019

Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)

\(\Leftrightarrow a+b+c=0\left(1\right)\)

Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)

Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)

30 tháng 7 2019

Nhân 2 vế của 2 ĐT đề bài ta có

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)

<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)

=>\(P=\frac{17}{10}\)

Vậy \(P=\frac{17}{10}\)

8 tháng 10 2019

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+a+b+c=2+2018\)

\(\Leftrightarrow\frac{a+ab+bc}{b+c}+\frac{b+bc+ab}{c+a}+\frac{c+ac+bc}{a+b}=2020\)

\(\Leftrightarrow a\left(\frac{1+b+c}{b+c}\right)+b\left(\frac{1+a+c}{a+c}\right)+c\left(\frac{1+a+b}{a+b}\right)=2020\left(1\right)\)

Vì \(a+b+c=2018\Rightarrow\hept{\begin{cases}a+b=2018-c\\b+c=2018-a\\c+a=2018-b\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được: 

\(a\left(\frac{2019-a}{b+c}\right)+b\left(\frac{2019-b}{a+c}\right)+c\left(\frac{2019-c}{a+b}\right)=2020\)

\(\Leftrightarrow\frac{2019a-a^2}{b+c}+\frac{2019b-b^2}{a+c}+\frac{2019c-c^2}{a+b}=2020\)

\(\Leftrightarrow\frac{2019a}{b+c}-\frac{a^2}{b+c}+\frac{2019b}{a+c}-\frac{b^2}{a+c}+\frac{2019c}{a+b}-\frac{c^2}{a+b}=2020\)

\(\Leftrightarrow2019\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)

\(\Leftrightarrow4038-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)( vì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\))

\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=2018\)

\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1=2019\)

16 tháng 3 2018

Ta có

\(4a^2+b^2=5ab\)

\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)

\(TH1:a=b\)

\(\Leftrightarrow\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

\(TH2:4a=b\)

\(\Leftrightarrow\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)

Vậy...............

k mk nha

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

Gọi nghiệm của phương trình 6x2+20x+15=0 là t1và t2 .

Nếu ta giả sử rằng a=tthì b=\(\frac{1}{t_2}\)

Lúc này biểu thức đã cho trở thành :

\(\frac{\frac{1}{t^3_2}}{\frac{t_1}{t^2_2}-9\left(\frac{t_1}{t_2}+1\right)^3}\)\(=\frac{1}{t_1.t_2-9\left(t_1+t_2\right)^3}\)

Bây giờ chỉ cần thay các giá trị t1+t2 và t1.t2 từ phương trình bậc 2 vào biểu thức trên để có đáp án.

P/s : nếu chưa học pt bậc 2 thì k làm được đâu

17 tháng 3 2020

chiuj^_^