K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)=> \(\frac{bc+ac+ab}{abc}=1\) => bc + ac + ab - abc = 0

<=> c.(a + b) + ab.(1 - c) = 0 

<=> c.(a + b) + ab. (a + b) = 0 <=> (a + b).(c + ab) = 0

<=> (a+ b).(1 - a - b + ab) = 0 <=> (a + b).[(1- b) - a.(1 - b)] = 0 <=> (a + b). (1 - a).(1 - b) = 0 

<=> a + b = hoặc 1 - a = 0 hoặc 1 - b = 0

+) a + b = 0 => a = - b và c = 1 => S = a2009 + b2009 + c2009 = (-b)2009 + b2009 + 12009 = 1

+) a = 1 => b + c = 0 => b = - c . tương tự => S = 1

+) b = 1. tương tự => S = 1

Vậy S = 1

11 tháng 7 2015

\(a+b+c=1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{ab+bc+ca}{abc}\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+\left(a+b\right).c^2=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+bc+ca+c^2\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\text{ hoặc }b+c=0\text{ hoặc }c+a=0\)

Do vai trò của a, b, c là như nhau nên không mất tính tổng quát, giả sử b + c = 0.\(b+c=0\Leftrightarrow b=-c\Rightarrow b^{2009}+c^{2009}=\left(-c\right)^{2009}+c^{2009}=-c^{2009}+c^{2009}=0\)

\(1=a+b+c=a+0=a\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}=1^{2009}+0=1\text{ (đpcm)}\)

NV
3 tháng 10 2019

\(a+b+c=\frac{1}{2017}\Rightarrow2017=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{ab+ac+bc+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\) \(\Rightarrow\left(a^{2009}+b^{2009}+c^{2009}\right)\left(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}\right)=1\)

16 tháng 10 2016

a2 + b2 +c=bn vậy Nguyễn Bảo Long

 

16 tháng 10 2016

ơ hay tui đăng lên hỏi bây giờ lại hỏi tui

28 tháng 10 2016

Ta có

(a+b+c)^2=0

=>a^2+b^2+c^2+2(ab+bc+ca)=0

Mà ab+bc+ca=0

=>a^2+b^2+c^2=0

=>a=0

b=0

c=0

Thay a=0;b=0;c=0 vào S ta được

S=1^2009+0^2010+1^2011=2

Vậy S=2

2 tháng 2 2017

Dap số A=0

19 tháng 12 2015

Làm gì có ở câu hỏi tương tự 

19 tháng 12 2015

??? tớchỉ mới học lớp 6 thoi nên ko hiểu