Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)
Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)
Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)
\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c\)
b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)
\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)
tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)
=>Thắng Nguyễn :cm theo cách đó sai
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
\(\dfrac{1}{c}+b^2c=ab\left(a+b+c\right)+b^2c=ab\left(a+c\right)+b^2\left(a+c\right)=b\left(a+b\right)\left(a+c\right)\)
\(\dfrac{1}{c}+a^2c=ab\left(a+b+c\right)+a^2c=a\left(a+b\right)\left(b+c\right)\)
\(\Rightarrow\left(\dfrac{1}{c}+b^2c\right)\left(\dfrac{1}{c}+a^2c\right)=ab\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)
\(\Leftrightarrow\left(1+b^2c^2\right)\left(1+a^2c^2\right)=c^2\left(a+b\right)^2ab\left(ab+bc+ac+c^2\right)\)\(=c^2\left(a+b\right)^2\left(a^2b^2+ab^2c+a^2bc+abc^2\right)\)\(=c^2\left(a+b\right)^2\left[a^2b^2+abc\left(a+b+c\right)\right]=c^2\left(a+b\right)^2\left(a^2b^2+1\right)\)
\(\Rightarrow\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2\left(a^2b^2+1\right)}=\left(a+b\right)^2\)
\(\Leftrightarrow\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\) (đpcm)
a/
\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)
\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)
\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)
\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)
\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta chứng minh với a,b > 0 thì : \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow2ab\left(a^4+b^4\right)\ge ab\left(a+b\right)\left(a^3+b^3\right)\)\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )
Gọi biểu thức là A
Ta có : \(A\ge\frac{1}{2}.\left(2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=1\)
Có thể xem thêm cách khác trong câu hỏi tương tự
Dễ dàng CM đc: \(\left(a^3+b^3\right)^2\le\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Andddd \(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Sigma\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\Sigma\frac{\frac{\left(a^3+b^3\right)^2}{a^2+b^2}}{ab\left(a^3+b^3\right)}=\Sigma\frac{a^3+b^3}{ab\left(a^2+b^2\right)}\ge\Sigma\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab\left(a^2+b^2\right)}=\Sigma\frac{a^2+b^2}{ab\left(a+b\right)}\)
\(\ge\Sigma\frac{\frac{\left(a+b\right)^2}{2}}{ab\left(a+b\right)}=\Sigma\frac{a+b}{2ab}=\frac{1}{2}\Sigma\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Dấu "=" xảy ra khi a=b=c=3