Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
Ta có : \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3ab.bc.ac\)
Đặt \(ab=x;bc=y;ac=z\) . Khi đó , ta có :
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+y^3+3x^2y+3y^2x\right)+z^3-3x^2y-3y^2x-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{matrix}\right.\)
Với \(x+y+z=0\Rightarrow ab+ac+bc=0\)
Với \(x^2+y^2+z^2-xy-yz-xz=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Lí luận tổng này \(\ge0\) ( làm tắt )
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(\Rightarrow ab=ac=bc\)
....
Đến bước này chịu , bạn xem đề có sai không ?
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
mà \(a,b,c\)dương nên \(x=y=z\Rightarrow a=b=c\).
\(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)=3^3=27\).
\(3a^2\)\(b^2\)\(c^2\)
\(=>ab+bc+ca=0\)
\(=>ab^2\)\(+bc^2\)\(+ca^2\)\(=0\)
\(TH1:ab+bc+ca=0\)
\(ab+bc=-ca\)
\(=>a+c=-\frac{ac}{b}\)
\(=>a+b=-\frac{ab}{c}\)
\(b+c=-\frac{bc}{a}\)
\(Thay\)\(A\)
\(=>A=-3\)
\(\left(ab-bc\right)^2\)\(+\left(bc-ca\right)^2\)\(+\left(ca-ab\right)^2\)\(=0\)
\(=>ab-bc=0\)
\(bc-ca=0\)
\(ca-ab=0\)
\(=>ab=bc=ca\)
\(=>a=b=c\)
\(Thay\)\(A\)
\(=>A=-24\)
\(=>A=\left(-3;-24\right)\)
Em làm sai mong anh thông cảm cho ạ
Đặt \(\hept{1\begin{cases}ab=x\\bc=y\\ca=z\end{cases}}\)thì ta có
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
Ta có: x2 + y2 + z2 - xy - yz - xz = 0
Đây là bất đẳng thức quen thuộc nên mình không chứng minh nhé.
Dấu = xảy ra khi x = y = z hay a = b = c
=> E = 2.2.2 = 8
Còn: x + y + z = 0 thì bạn nghĩ tiếp nhé
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath
Tham khảo câu b