Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0
Áp dụng ta được
\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)
....................................................
Khi đó
\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)
Vậy VT<3
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
a/ Gọi giao của HD với AB là I, giao của HE với AC là K
+ Xét tam giác AHE có
KH=KE (E, H đối xứng qua K) => AK là trung tuyến
AK vuông góc HE (E, H đối xứng qua AC) => AK là đường cao
=> Tam giác AHE là tam giác cân tại A (Tam giác có đường cao vừa là đường trung tuyến => tam giác cân)
=> AK là phân giác của ^HAE (Trong tam giác cân đường cao đồng thời là đường phân giác của góc ở đỉnh)
=> ^HAK=^KAE
+ Xét tam giác DAH chứng minh tương tự như với tam giác AHE => ^HAI=^IAD
+ Mà ^HAK+^HAI=^BAC=90 => ^KAE+^IAD=90
=> ^IAD+^HAI+^HAK+^KAE=^DAE=180 => A,D,E thẳng hàng
b/
+ Xét tam giác CEH, chứng minh tương tự như với tam giác AHE ở câu a/ ta cũng có tam giác CEH là tam giác cân tại C
=> ^CHE=^CEH
+ Ta có ^AHE=^AEH (tam giác AHE cân)
=> ^AHC=^CHE+^AHE=CEH+^AEH=^AEC=90
+ Chứng minh tương tự khi vét tam giác BHD ta cũng có kết quả ^ADB=90
=> BDEC là hình thang vuông
c/
+ CE=CH (tam giác CHE cân tại C)
+ BD=BH (tam giác BHD cân tại B)
=> BD+CE=BH+CH=BC
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\frac{a+b}{ab}==\frac{-a-b}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=> a = - b hoặc a= - c hoặc b = - c
Với \(a=-b\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\) (1)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)(2)
Từ (1);(2) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)
Còn 2 TH nữa là b = - c và - c = a bn xét tiếp nha
Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Leftrightarrow abc+ca^2+a^2b+b^2c+abc+ab^2+c^2b+c^2a+abc=abc\)
\(\Leftrightarrow3abc+ca^2+a^2b+b^2c+ab^2+c^2b+c^2a=abc\)
\(\Leftrightarrow2abc+a^2b+a^2c+b^2c+b^2a+c^2b+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Với a + b = 0
=> a = -b
Thay vào biểu thức cần chứng minh
=> \(\frac{1}{c^3}=\frac{1}{c^3}\) (đúng)
Tượng tự với 2 trường hợp còn lại .