Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac
2 = 1/a+1/b+1/c => 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb
=> 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2
=> M = 4 - 2 = 2
Mk làm bài đầu thôi,sáng nay mk làm cái tt cho
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\)\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\) (do a+b+c = abc)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Rightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự: \(b^2+2ac=\left(b-c\right)\left(b-a\right)\)
\(c^2+2ab=\left(a-c\right)\left(b-c\right)\)
\(B=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ca+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}-\frac{ca+1}{\left(a-b\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-b\right)-\left(ca+1\right)\left(b-c\right)+\left(ab+1\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(bc+1-ca-1\right)+\left(a-b\right)\left(ab+1-ca-1\right)\)
\(=\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)\)
\(=\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy B = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)
\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)
\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)
Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)
\(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
Sau đó bạn thực hiện tiếp nhé.
Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)
Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)
Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)
Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
ta có a+b+c=0
<=>a=-(b+c)
b=-(a+c)
c=-(a+b)
=>a2+b2-c2=a2+b2-(-(a+b))2
=a2+b2-(a+b)2
=a2+b2-a2-b2-2ab=-2ab
b2+c2-a2=b2+c2-(-(b+c))2
=b2+c2-(b+c)2
=b2+c2-b2-c2-2bc=-2bc
a2+c2-b2=a2+c2-(-(a+c))2
=a2+c2-(a+c)2
=a2+c2-a2-c2-2ac=-2ac
=>Q=\(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c}{-2abc}+\frac{a}{-2abc}+\frac{b}{-2abc}=\frac{a+b+c}{-2abc}=0\)