Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi
Lời giải khác:
Áp dụng BĐT AM-GM:
$a^2+(b+c)^2=a^2+\frac{(b+c)^2}{4}+\frac{3(b+c)^2}{4}$
$\geq a(b+c)+\frac{3}{4}(b+c)^2$
$\Rightarrow \frac{a(b+c)}{a^2+(b+c)^2}\leq \frac{4a}{4a+3b+3c}$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{4a}{4a+3b+3c}=\frac{4a}{a+\frac{a+b+c}{3}+...+\frac{a+b+c}{3}}\leq \frac{1}{100}.4a\left(\frac{1}{a}+\frac{3}{a+b+c}+...+\frac{3}{a+b+c}\right)$
$=\frac{1}{25}+\frac{27a}{25(a+b+c)}$
Tương tự với những phân thức còn lại và cộng theo vế:
$\Rightarrow \text{VT}\leq \frac{3}{25}+\frac{27}{25}=\frac{6}{5}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Đặt BĐT cần c/m là A
Dự đoán đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Cauchy cho 3 số không âm:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)
\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)
\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)
Cộng từng vế của các BĐT trên, ta được:
\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
(Dấu "="\(\Leftrightarrow a=b=c\))
\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải
bất đẳng thức schur bậc 3,dễ mà,c/m cũng dễ nữa,tự tra đi.gợi ý này:giả sử a>b>c nhé
Thử cách của em xem:)
Do vai trò bình đẳng giữa a, b, c ta có thể giả sử \(a\ge b\ge c\).
BĐT \(\Leftrightarrow\left(\frac{b+c-a}{2}\right)\left(b-c\right)^2+\left(\frac{c+a-b}{2}\right)\left(c-a\right)^2+\left(\frac{a+b-c}{2}\right)\left(a-b\right)^2\ge0\)
Đặt \(\frac{b+c-a}{2}=S_a;\frac{c+a-b}{2}=S_b;\frac{a+b-c}{2}=S_c\) thì:
\(S_b;S_c\ge0\Rightarrow S_b+S_c\ge0\left(1\right)\). và BĐT trở thành \(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge0\)
\(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(b-c+a-b\right)^2+S_c\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(b-c\right)\left(a-b\right)\ge0\)
Do \(a\ge b\ge c\)và Sb > 0 nên \(2S_b\left(b-c\right)\left(a-b\right)\ge0\). Theo (1) thì Sb + Sc > 0. Kết hợp với (*), ta cần chứng minh:
\(\left(S_a+S_b\right)\left(b-c\right)^2\ge0\Leftrightarrow S_a+S_b\ge0\).
\(\Leftrightarrow\frac{b+c-a}{2}+\frac{c+a-b}{2}\ge0\Leftrightarrow c\ge0\) (luôn đúng)
Đẳng thức xảy ra khi \(a=b=c\text{hoặc }a=b;c=0\text{ và các hoán vị của nó.}\)
Sai thì em chịu nha!