Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)
Áp dụng BĐT AM-GM:
\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)
\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)
Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)
Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)
Áp dụng BĐT AM-GM:
\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)
\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)
Cộng những BĐT vừa cm được ở trên với nhau:
\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)
Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+\dfrac{1}{4a}\text{ ≥}2\sqrt{a.\dfrac{1}{4a}}=2.\dfrac{1}{2}=1\)
\(b+\dfrac{1}{4b}\text{ ≥}2\sqrt{b.\dfrac{1}{4b}}=2.\dfrac{1}{2}=1\)
\(c+\dfrac{1}{4c}\text{ ≥}2\sqrt{c.\dfrac{1}{4c}}=2.\dfrac{1}{2}=1\)
⇒ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥}3\)
⇔ \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥ }3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}=3+\dfrac{3}{4}.\dfrac{9}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\) ⇒ \(A_{MIN}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)
\(H=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(\dfrac{3}{2}\right)^2+\dfrac{81}{\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Từ \(a+b+c\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c\geq \frac{ab+bc+ac}{abc}\Rightarrow abc(a+b+c)\geq ab+bc+ac\)
\(\Rightarrow a^2b^2c^2(a+b+c)^2\geq (ab+bc+ac)^2(1)\)
Áp dụng BĐT AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\)
\(b^2c^2+c^2a^2\geq 2abc^2\)
\(a^2b^2+c^2a^2\geq 2a^2bc\)
Cộng theo vế, rút gọn \(\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Rightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)
Từ \((1);(2)\Rightarrow a^2b^2c^2(a+b+c)^2\geq 3abc(a+b+c)\)
\(\Rightarrow abc(a+b+c)\geq 3\Rightarrow a+b+c\geq \frac{3}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Theo C.B.S thì
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)
Lại theo CBS thì
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)
\(\Rightarrow\)\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)\(\)\(\ge21+9=30\)
vậy Min = 30 khi a = b = c = 1/3
Bài 1
\(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=a-\dfrac{a^2}{a+1}+b-\dfrac{b^2}{b+1}+c-\dfrac{c^2}{c+1}\)
\(=1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\)
Áp dụng bđt Cauchy dạng phân thức \(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{1}{1+3}=\dfrac{1}{4}\)
\(\Rightarrow1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\le1-\dfrac{1}{4}=\dfrac{3}{4}\)
\(\Rightarrow GTLN=\dfrac{3}{4}\) Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Bài 2
\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\dfrac{a}{b^2+1}+\dfrac{1}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{1}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}\)
Xét \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{a^2c}{a^2+1}\)
Xét \(\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{a^2+1}=1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}+1-\dfrac{a^2}{a^2+1}\)
\(\Rightarrow P=6-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}+\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)
Áp dụng bđt Cauchy cho 2 số thực dương ta có \(b^2+1\ge2b\Rightarrow\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ac}{2}\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\ge ab+bc+ac\) \(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ac}{2}\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{3}{2}\)
Áp dụng bđt Cauchy cho 2 số thực dương ta có \(a^2+1\ge2a\Rightarrow\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\)
\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
\(\Rightarrow P\ge6-\left(\dfrac{3}{2}+\dfrac{3}{2}\right)=3\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c=1\)
Bài 1 : Ta có : \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\)
Theo BĐT CÔ - SI dưới dạng engel ta có :
\(\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\left(a+b+c\right)}=\dfrac{1}{a^2+b^2+c^2+1}\le\dfrac{1}{\dfrac{1}{a+b+c}+1}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{4}{3}\)
Híc híc rối nùi luôn rồi , chắc sai ...
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)
Mặt khác theo BĐT Cauchy:
\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)
\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)
Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$
Ta có A=\(+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+\dfrac{4}{a}+b+\dfrac{9}{b}+c+\dfrac{16}{c}-\dfrac{4}{a}-\dfrac{8}{b}-\dfrac{15}{c}\)\(\ge2\sqrt{a.\dfrac{4}{a}}+2\sqrt{b.\dfrac{9}{b}}+2\sqrt{c.\dfrac{16}{c}}-\dfrac{4}{2}-\dfrac{8}{3}-\dfrac{15}{4}=4+6+8-2-\dfrac{8}{3}-\dfrac{15}{4}=\dfrac{115}{12}\)
dấu = xảy ra <=> a=2,b=3,c=4
@Akai Haruma chị giúp e với
Lời giải:
Ta có:
\(A=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
\(=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)
\(=(a+b+c+3)-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}\)
\(=6-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}(*)\)
Áp dụng BĐT AM-GM:
\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}\)
\(\Leftrightarrow M\leq \frac{a+b+c+ab+bc+ac}{2}=\frac{3+ab+bc+ac}{2}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
Do đó: \(M\leq \frac{3+3}{2}=3(**)\)
Từ \((*); (**)\Rightarrow A\geq 6-3=3\)
Vậy \(A_{\min}=3\Leftrightarrow a=b=c=1\)