Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)
\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\)
\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
ta có \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)
đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)
áp dụng bất đẳng thức bunhiacopxki ta có
\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow H\ge\frac{1}{a+b+c}\)
hay \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Có: \(VT=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)
\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ba}+\frac{ab}{ac+bc}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được
\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{2\left(ab+bc+ca\right)}\)
Mà\(\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2\ge3\left(ab+bc+ca\right)\)(Chuyển vế đưa thành tổng bình phương)
\(\Rightarrow VT\ge...\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" khi a=b=c=1
Áp dụng bất đẳng thức AM-GM cho 3 số :
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3\left(b+1\right)\left(c+1\right)}{\left(b+1\right)\left(c+1\right)8^2}}=\frac{3a}{4}\)
Tương tự ta có \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3c}{4}\)
Cộng theo vế các bđt trên ta được :
\(VT+2\left(\frac{a}{8}+\frac{b}{8}+\frac{c}{8}+\frac{3}{8}\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(< =>VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{6}{8}\)
\(=\frac{1}{2}\left(a+b+c\right)-\frac{6}{8}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{6}{8}=\frac{12-6}{8}=\frac{6}{8}=\frac{3}{4}\)
Dấu "=" xảy ra \(< =>a=b=c=1\)
Done !
cm \(P\ge\frac{3}{4}\)nhé mn