Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(\frac{a+b+c}{9}\)nha
Đặt \(P=\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}\)
Áp dụng bđt AM-GM cho 3 số dương a,b,c ta được:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)^2}.\frac{b+2c}{27}.\frac{b+2c}{27}}=\frac{a}{3}\)
\(\frac{b^3}{\left(c+2a\right)^2}+\frac{c+2a}{27}+\frac{c+2a}{27}\ge3\sqrt[3]{\frac{b^3}{\left(c+2a\right)^2}.\frac{c+2a}{27}.\frac{c+2a}{27}}=\frac{b}{3}\)
\(\frac{c^3}{\left(a+2b\right)^2}+\frac{a+2b}{27}+\frac{a+2b}{27}\ge3\sqrt[3]{\frac{c^3}{\left(a+2b\right)^2}.\frac{a+2b}{27}.\frac{a+2b}{27}}=\frac{c}{3}\)
Cộng từng vế ta được:
\(P+\)\(\frac{6\left(a+b+c\right)}{27}\ge\frac{a+b+c}{3}\)
\(\Rightarrow P\ge\frac{a+b+c}{9}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
Đặt \(A=\left(\frac{a}{a^2b^2+a^2+1}\right)^2+\left(\frac{b}{b^2c^2+b^2+1}\right)^2+\left(\frac{c}{c^2a^2+c^2+1}\right)^2\)
Cần cm : \(B=\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}=1\)
\(B=\frac{a^2b^2c^2}{a^2b^2+a^2+a^2b^2c^2}+\frac{1}{b^2c^2+b^2+1}+\frac{a^2b^2c^2}{a^2c^2+a^2b^2c^3+a^2b^2c^2}\) (Do \(abc=1\))
\(=\frac{b^2c^2}{b^2c^2+b^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{b^2}{b^2c^2+b^2+1}=\frac{b^2c^2+b^2+1}{b^2c^2+b^2+1}=1\)(đúng)
Ta có : \(A=\frac{\frac{1}{\left(a^2b^2+a^2+1\right)^2}}{a^2}+\frac{\frac{1}{\left(b^2c^2+b^2+1\right)^2}}{b^2}+\frac{\frac{1}{\left(c^2a^2+c^2+1\right)^2}}{c^2}\)
\(\ge\frac{\left(\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}\right)^2}{a^2+b^2+c^2}=\frac{B^2}{a^2+b^2+c^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
phân thức thức thứ 3 dòng thứ 3 ở mẫu là \(a^2c^2+a^2b^2c^4+a^2b^2c^2\)chứ bạn nhỉ????
\(P=\frac{a^2}{b^2+2bc}+\frac{b^2}{c^2+2ac}+\frac{c^2}{a^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
Chịu bài này rồi!
mk mới hk lp 6 , bài này bó tay ko giải đc