\(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 6 2020

\(P=\frac{a^2}{b^2+2bc}+\frac{b^2}{c^2+2ac}+\frac{c^2}{a^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

23 tháng 1 2019

cái này sai rồi nha.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2019

toán lớp 9 chơ

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)

\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)

\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)

=> đpcm

Đẳng thức xảy ra <=> a = b = c

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Một bài rất easy để dùng sos đây ạ!1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)Suy...
Đọc tiếp

Một bài rất easy để dùng sos đây ạ!

1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) 

Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)

Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)

Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D

Bài toán 2\(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)

 

 

 

0
NV
12 tháng 6 2020

Đặt vế trái là P

\(P=\sum\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}\ge\sum\frac{2\left(b+c-a\right)^2}{2a^2+2\left(b^2+c^2\right)}=\frac{\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{3\left(a^2+b^2+c^2\right)-2ab-2ac-2bc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 5 2020

Mọi người ơi, giúp mik vs mik cần rất gấpkhocroi

26 tháng 3 2016

Chịu bài này rồi!

26 tháng 3 2016

mk mới hk lp 6 , bài này bó tay ko giải đc

1 tháng 1 2018

ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)

              \(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)

              \(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)

mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)

tương tự mấy cái kia rồi + vào, ta có 

\(Q\le1+4\left(a+b+c\right)+3=8\)

dấu = xảy ra <=>a=b=c=1/3

^_^