K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Đặt \(t=\frac{1}{ab}\) ; \(ab=\frac{1}{t}\)

=> \(\frac{1}{ab}\ge\frac{1}{\left(\frac{a+b}{2}\right)^2}=\frac{1}{\left(\frac{1}{2}\right)^2}=4\)

Dự đoán a = b = 1/2  =>  t = 4  

Có : \(S=\frac{1}{t}+t=\left(\frac{t}{16}+\frac{1}{t}\right)+\frac{15t}{16}\ge2\sqrt{\frac{t}{16}.\frac{1}{t}}+\frac{15.4}{16}=\frac{17}{4}\)

Vậy \(Min_S=\frac{17}{4}\Leftrightarrow a=b=\frac{1}{2}\) 

21 tháng 9 2017

sử dụng bđt Cô-si với hai số không âm ta có:

ab+1/ab\(\ge\)2\(\sqrt{ab.\frac{1}{ab}}\)

hay ab+1/ab\(\ge\)2 hay S\(\ge\)2

Dấu bằng xảy ra khi ab=1/ab\(\Leftrightarrow\)a2b2=1\(\Leftrightarrow\)ab=1.Mà  a+b\(\le\)1

\(\Rightarrow\)a=b=1(thỏa mãn a.b dương)

Vậy minS=2 khi a=b=1

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

22 tháng 7 2019

\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)

\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)

22 tháng 7 2019

à quên tách ra mà quên đoạn sau :v thêm vào tí nhé 

\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)

10 tháng 2 2021

có ở trong câu hỏi tương tự nhé

\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé 

18 tháng 10 2017

Ta có: 

\(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)

\(\Leftrightarrow\frac{a}{1+a}\ge\frac{2017}{2017+b}+\frac{2018}{2018+c}\ge2\sqrt{\frac{2017.2018}{\left(2017+b\right)\left(2018+c\right)}}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{2017+b}\ge2\sqrt{\frac{2018}{\left(1+a\right)\left(2018+c\right)}}\left(2\right)\\\frac{c}{2018+c}\ge2\sqrt{\frac{2017}{\left(1+a\right)\left(2017+b\right)}}\left(3\right)\end{cases}}\)

Lấy (1), (2), (3) nhân vế theo vế rút gọi ta được

\(abc\ge2\sqrt{2017.2018}.2.\sqrt{2018}.2.\sqrt{2017}=8.2017.2018\)

14 tháng 11 2019

Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta có:

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\left(1\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\left(1\right)\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{z}{xyz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\) hay \(a=b=c=1\)

14 tháng 11 2019

Nhầm dòng thứ 3 dưới lên ạ:(

\(\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{y}{xyz\left(x+y+z\right)}\) mới đúng nha !