K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:

AB = AC ( gt ) 

Góc A chung

=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)

=> BE = CF và góc ABE = góc ACF

b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:

BC chung

FC = EB ( c/m trên)

=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)

=> FB=EC

Tam giác ECI và tam giác FBI, có:

EC=FB (c/m trên)

góc E= góc F (=90 độ)

góc ACF = góc ABE (c/m trên)

=> tam giác ...= tam giác... (g-c-g)

c) Ta có: FA=AB - FB

              EA=AC - EC

mà AB=AC; FB=EC

=> FA=EA

tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:

AI chung

FA=EA (c/ m trên)

=> tam giác... = tam giác... (  cạnh huyền-cạnh góc vuông)

=> góc BAI = góc CAI

hay AI là phân giác của góc A

4 tháng 3 2022

21sw23esd

24 tháng 2 2015

a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:

AB = AC ( gt ) 

Góc A chung

=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)

=> BE = CF và góc ABE = góc ACF

b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:

BC chung

FC = EB ( c/m trên)

=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)

=> FB=EC

Tam giác ECI và tam giác FBI, có:

EC=FB (c/m trên)

góc E= góc F (=90 độ)

góc ACF = góc ABE (c/m trên)

=> tam giác ...= tam giác... (g-c-g)

c) Ta có: FA=AB - FB

              EA=AC - EC

mà AB=AC; FB=EC

=> FA=EA

tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:

AI chung

FA=EA (c/ m trên)

=> tam giác... = tam giác... (  cạnh huyền-cạnh góc vuông)

=> góc BAI = góc CAI

hay AI là phân giác của góc A

 

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

9 tháng 1 2020

Hình bạn tự vẽ nha!

Sửa lại đề là \(CF=EB.\)

a) Ta có:

\(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABE}=180^0\\\widehat{ACB}+\widehat{ACF}=180^0\end{matrix}\right.\) (các góc kề bù).

\(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{ABE}=\widehat{ACF}.\)

b) Xét 2 \(\Delta\) \(ABE\)\(ACF\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(BE=CF\left(gt\right)\)

=> \(\Delta ABE=\Delta ACF\left(c-g-c\right).\)

c) Theo câu b) ta có \(\Delta ABE=\Delta ACF.\)

=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng).

Hay \(\widehat{HEB}=\widehat{KFC}.\)

Xét 2 \(\Delta\) vuông \(EBH\)\(FCK\) có:

\(\widehat{BHE}=\widehat{CKF}=90^0\left(gt\right)\)

\(EB=FC\left(gt\right)\)

\(\widehat{HEB}=\widehat{KFC}\left(cmt\right)\)

=> \(\Delta EBH=\Delta FCK\) (cạnh huyền - góc nhọn) (đpcm).

Chúc bạn học tốt!

9 tháng 1 2020

Sửa đề: Lấy E thuộc tai đối của tia BC,Lấy F thuộc tia đối của tia CB sao cho CF = EB

Giải

a/Có: \(\widehat{ABC}+\widehat{ABE}=180^0\)

\(\widehat{ACB}+\widehat{ACF}=180^0\)

Lại có: \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

=> \(\widehat{ABE}=\widehat{ACF}\)

b/ Xét ΔABE và ΔACF ta có:

AB = AC (GT)

\(\widehat{ABE}=\widehat{ACF}\) (câu a)

EB = CF (GT)
=> ΔABE = ΔACF (c - g - c)

c/ Có: ΔABE = ΔACF (câu a)

=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng)

Hay: \(\widehat{HEB}=\widehat{KFC}\)

Xét ΔHBE và ΔKCF ta có:

EB = CF (GT)

\(\widehat{HEB}=\widehat{KFC}\) (cmt)

=> ΔHBE = ΔKCF (c.h - g.n)

25 tháng 4 2019

B A C D E F S

a)   Tam giác ABD và EBD có:

Góc ABD = EBD (BD là phân giác)

Cạnh BA = BE (gt)

Cạnh BD chung

=> Tam giác ABD = EBD (c-g-c)   (*)

b)  Từ (*) => góc BED = 90 độ (= góc BAD)

=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE  (1)

mà từ (*) => DE = AD  (2)

Từ (1) và (2) => DC > AD

c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm

Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC

=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.

Vậy B, D, S thẳng hàng.

26 tháng 3 2024

α⚽

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)