Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)
\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)
\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên
\(\left(a-1\right)a\left(a+1\right)⋮3\)
\(\left(b-1\right)b\left(b+1\right)⋮3\)
\(\left(c-1\right)c\left(c+1\right)⋮3\)
\(\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)
hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)
-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.
=> a3-a chia hết cho 3.
-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.
=> a3+b3+c3 -(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.
=> nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.chúc bn hok tốt
Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng
thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d
thay b= 3a+c vào 2 đa thức trên sẽ đc:
f(1)= 4a+2c+d và f(-2)= 4a+2c+d
=> f(1).f(-2)= ( 4a+2c+d )2
mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
vậy f(1).f(-2) là bình phương của một số nguyên
ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Đề sai của bạn sai nhé
Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng
Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c
Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)
Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
Vậy f(1).f(-2) là bình phương của một số nguyên
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{c}{d}=\frac{b}{c}\left(2\right)\)
Từ (1);(2) dễ dàng suy ra:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}\)
\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Bài 1 :
Ta có :
\(A=1+3+5+7+...+n\) ( n lẻ )
Số số hạng :
\(\frac{n-1}{2}+1=\frac{n-1+2}{2}==\frac{n+1}{2}\) ( số hạng )
Suy ra :
\(A=\frac{\left(n+1\right).\frac{n+1}{2}}{2}=\frac{\left(n+1\right)\left(n+1\right)}{2}:2=\frac{\left(n+1\right)^2}{2}.\frac{1}{2}=\frac{\left(n+1\right)^2}{2^2}=\left(\frac{n+1}{2}\right)^2\)
Vậy A là số chính phương
Chúc bạn học tốt ~
Giả sử 2 số trong 3 số không bằng nhau :
a < b (1)
Trong hai lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy :
Do : ab = bc mà a < b \( \implies\) c < b
Ta có : bc = ca mà c < b \( \implies\) c < a
Ta có : ca = ab mà c < a \( \implies\) a > b (2)
Từ (1) ; (2) \( \implies\) Mâu thuẫn
\( \implies\) a = b = c (đpcm)