K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

a chia 5 dư 3 =>a=5k+3

a chia 5 dư 4 =>a=5c+4

=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12

=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2

=>đpcm

15 tháng 7 2019

1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1

mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)

=> a^2+a-2=a^2-a

=>a^2 + a -2 - a^2 +a =0

=> 2a - 2 = 0

=> 2(a-1)=0

=> a-1 = 0

=> a=1

=> a-1 = 1-1 = 0

     a+1 = 1+1=2

vậy 3 số tự nhiên liên tiếp đó là 0,1,2

22 tháng 5 2017

Do a chia cho 5 dư 3=> a=5k+3 (k \(\in N\))

b chia cho 5 dư 4=> b= 5q+4 ( \(q\in N\))

=> ab= (5k+3)(5q+4)

ab= 25kq+20k+15q+12

ab= 25kq+20k+15q+10+2

ab= 5(5kq+4k+3q+2)+2

vì 5 \(⋮\) 5

=> 5(5kq+4k+3q+2) \(⋮\) 5

=> 5(5kq+4k+3q+2) +2 chia cho 5 dư 2

Vậy ab chia cho 5 dư 2 (đpcm)

----An cố gắng học tốt Toán nhá----

21 tháng 5 2017

Đặt a=5x+3

b=5y+4

Ta có: ab=(5x+3)(5y+4)

= 25xy+20x+15y+12

=25xy+20x+15y+10+2

=5(5xy+4x+3y+2)+2

Vì 5(5xy+4x+3y+2) chia hết cho 5

\(\Rightarrow\)5(5xy+4x+3y+2)+2 chia cho 5 dư 2

\(\Rightarrow\)đpcm

gọi số tự nhiên là a , ta có :

A = 4a + 3

   = 17b + 9

   = 19c + 3

Mặt khác A + 25 = 4a  + 3 + 25 = 4a + 28 = 4( a +  7 )

                           = 17b + 9 +  25 = 17b + 34 = 17 ( b + 2 )

                           = 19c + 13 + 25 = 19c + 38 = 19( c + 3 )

Như vậy A + 25 đồng thời chia hết cho 4 ; 17 ; 19

mà ( 4 : 17 : 19 ) = 1

=> A + 25  chia hết cho 1292

=> A + 25 = 1292k ( k = 1 ; 2 ; 3 ; ......... )

=> A = 1292k - 25  = 1292k - 1292 + 1267 = 1292 ( k -1 ) + 1267

Do 1267 < 1292 nên 1267 là số trong phép chia số đã cho A là 1292

2 tháng 8 2015

Gọi a=5k+4

Ta có a^2=(5k+4)^2=25k^2+40k+16=5(5k^2+8k+3)+1. Vậy a^2 chia 5 dư 1 nếu a chia 5 dư 4

23 tháng 6 2017

biết số tự nhiên a chia cho 5 du 4. chứng minh a^2 chia 5 dư 1

10 tháng 7 2018

Bài làm

Vì a : 5 dư 4 nên ta có dạng a = 5k + 4

Ta có a2 = ( 5k + 4 )2 = 25k2 + 40k + 16

Ta thấy : 25k2 chia hết cho 5

               40k chia hết cho 5

               16 : 5 = 3 dư 1

=> 25k2 + 40k + 16 chia 5 dư 1

=> a2 : 5 dư 1 ( điều phải chứng minh)

~ Hok Tốt ~

15 tháng 6 2016

do a chia 5 dư 4

=> a=5k+4 (k thuộc N)

=> a2=(5k+4)2=(5k+4).(5k+4)=5k.(5k+4)+4.(5k+4)

=25k2+20k+20k+16=25k2+40k+15+1 chia 5 dư 1

Vậy nếu số tự nhiên a chia cho 5 dư 4 thì a^2 chia cho 5 dư 1 

15 tháng 6 2016

a chia 5 dư 4 nên a có dạng: a = 5k + 4

=> a= (5k + 4)2 = 25k2 +40k +16 = 25k2 +40k +15 + 1 = 5*(5k2 +8k +3) + 1

Vậy a2 chia 5 dư 1. ĐPCM

2 tháng 3 2016

Chia cho 45 dư 32

2 tháng 3 2016

nhờ trình bày với

1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5 

\(\Rightarrow\)c phải là 5 

Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b 

\(\Rightarrow\)A có thể là 1955 hoặc là 9155

11 tháng 8 2016

cảm ơn nhé