K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(3A=3^2+3^3+3^4+...+3^{2021}\)

\(2A=3A-A=3^{2021}-3\)

\(\Rightarrow2A+3=3^{2021}-3+3=3^{2021}=3^n\Rightarrow n=2021\)

9 tháng 8 2021

A = 3 + 32 + 33 + ...+3100 

3A = 32 + 33 + 34 + ...+ 3101

3A - A = ( 32 + 33 + 34 + ...+ 3101 )  - ( 3 + 32 + 33 + ...+3100  ) 

 2A = 3101 - 3 

Thay vào 2A + 3 = 3n ta có 

 3101 - 3 + 3 = 3n

3101 = 3n

=> n = 101

9 tháng 8 2021

A = 3 + 32 + 33 +....+ 3100

\(\Rightarrow\) 3A= 3.(3 + 32 + 33 +....+ 3100)

\(\Rightarrow\) 3A= 32 + 33 + 34 +.....+ 3101

\(\Rightarrow\)3A - A= (32 + 33 + 34 +.....+ 3101) - (3 + 32 + 33 +....+ 3100)

\(\Rightarrow\)2A= 3101 - 3

mà 2A + 3 = 3n

\(\Rightarrow\)3101 - 3 + 3 = 3n

\(\Rightarrow\)3101 = 3n

\(\Rightarrow\)n=101

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100}A=3+32+33+...+3100 (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101}3A=32+33+...+3100+3101 (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 32A=31013.

Do đó, 2A + 3 = 3^{101}2A+3=3101

Mà theo đề bài 2A + 3 = 3^n2A+3=3n.

Vậy n = 101n=101.

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

17 tháng 12 2017

A = 3 + 3^2 + 3^3 +...+ 3^99

3A = 32 + 33 + 34 + ... + 3100

3A - A = ( 32 + 33 + 34 + ... + 3100 ) - (  3 + 3^2 + 3^3 +...+ 3^99 )

2A = 3100 - 3

\(\Rightarrow\)2A = 3100 - 3 + 3 = 3100

Vậy n = 100

17 tháng 12 2017

A= 3+ 3^2 + 3^3 +...+3^99

3A= 3^2 + 3^3 + 3^4 +...+ 3^100

2A=3A-A=(3^2+3^3+3^4+...+3^100) - (3+3^2+3^3+...+3^99)

2A=3^100 - 3

2A + 3=3n= 3^100 - 3 + 3 = 3^100

n=3n:3=3^100:3

n=3^100-1=3^99

21 tháng 9 2018

Bài 1:

A= 3+ 3^2 + 3^3 +......+   3^2016

3A= 3^2+3^3+3^4+.......+3^2017

3A-A= 3^2 + 3^3 +3^4+.....+3^2017-( 3+3^2+3^3+.......+3^2016)

2A= 3^2017-3 

A= (3^2017-3) :2

Bài 2:

2a+3= 3n

Ta thấy : 3 chia hết cho 3; 3n chia hết cho 3

=> 2a chia hết cho 3 . Mà 2 ko chia hết cho 3 => a chia hết cho 3 

=> a= 0

1 tháng 7 2015

a=3+32+33+....+3100

=>3a=32+33+....+3101

=>3a-a=32+33+....+3101 -(3+32+33+....+3100)

=>2a=32+33+....+3101-3-32-33-...-3100

=>2a=3101-3

=>2a+3=3101

mà theo đề 2a+3=3n

=>n=101

vậy n=101

1 tháng 7 2015

a=3+32+...+3100

=>3a=32+33+...+3101=> 3a-a=2a=(32+33+...+3101)-(3+32+...+3100)=3101-3

\(\Rightarrow a=\frac{3^{101}-3}{2}\)

=>2a+3=\(2\times\frac{3^{101}-3}{2}+3=\left(3^{101}-3\right)+3=3^{101}-3+3=3^{101}-\left(3-3\right)=3^{101}-0=3^{101}\)

A = 3 + 32 + 33 + ..+ 3100 

=> 3A = 32 + 33 + 34 + ..+ 3101 

=> 3A  - A = ( 32 + 33 + 34 + 31101 

=> - ( 3 + 32 + 33 + 3100 ) 

=> 2A = 3101  - 3 

Màk 2A + 3 = 3n 

=> 3101 - 3 + 3 = 3n

=> 3n = 3101 

=> n = 101 

Vậy...

^^ Học tốt! 

25 tháng 6 2017

THỨ MẤY bn???????