Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)
Để A là phân số thì n-2\(\ne\)0
<=> n\(\ne\)2
Vậy n\(\ne\)2 thì A là phân số
b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)
Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên
=> 3n+11\(⋮\)n-2
Ta có 3n+11=3(n-2)+17
Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)
Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)
Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
Đối chiếu điều kiện ta được n={-15;1;3;19}
Vậy n={-15;1;3;19} thì A đạt giá trị nguyên
A = 235 \(\times\) 106 - 24255 : ( 240 - a)
Với a - 9 ta có:
A = 235 \(\times\) 106 - 24255 : ( 240 - 9)
A = 24910 - 24255 : 231
A = 24910 - 105
A = 24805
b, A = 235 \(\times\) 106 - 24255 : (240 - a)
A = 24805 - \(\dfrac{24255}{240-a}\) ( a \(\ne\) 240)
Amin ⇔ \(\dfrac{24255}{240-a}\) max
24255 > 0 ⇒ \(\dfrac{24255}{240-a}\) max ⇔ 240 - a = 1 ⇒ a = 239
Vậy Amin = 24805 - 24255 = 550 ⇔ a = 239
Baif 2:a:
Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2
A=1+3/n-2
=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2
=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)
<=>n thuoc (1;3;-1;5)
b;
Co:A=1+3/n-2
Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat
<=>n-2=1<=>n=3
Khi do A=1+3/3-2=4
Vay GTLN cua A=4 tai n=3
kbhbbkkhhđhdf