K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

\(A\left(x\right)=8-5x+3x^2-15-3x+16=3x^2-8x+9\)

\(B\left(x\right)=5x-2x^2+4x-1-x^2-3x=-3x^2+6x-1\)

\(C\left(x\right)=B\left(x\right)-A\left(x\right)=\left(-3x^2+6x-1\right)-\left(3x^2-8x+9\right)\)

\(C\left(x\right)=-6x^2+14x-10\)

19 tháng 4 2019

a,

*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)

\(P(x)=-3x^2+7x-x^3-1\)

\(P(x)=-x^3-3x^2+7x-1\)

* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)

\(Q(x)=3x^4-x^2-x^3-2x-1\)

\(Q(x)=3x^4-x^3-x^2-1\)

b, \(M(x)=P(x)-Q(x)\)

\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)

\(M(x)=-2x^2+7x-3x^4\)

6 tháng 3 2018

Ta có: đa thức: \(C\left(x\right)=3x^2+12\)

Mà \(3x^2\ge0\)

Do đó: \(3x^2+12\ge12>0\)

Do đó da thức trên vô nghiệm

7 tháng 6 2020

Đù mỗi mình sai :v

7 tháng 6 2020

Miyuki Misaki đen lắm

14 tháng 7 2016

a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)

\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)

\(=7x^4-9x^3+\frac{7}{4}x-3\)

\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)

\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)

\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)

b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)

\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)

\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)

\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)

14 tháng 7 2016

c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)

\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)

f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)

\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)

6 tháng 6 2018

Giải:

a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)

\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)

\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)

\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)

\(=2x^2+3x\)

Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow2x^2+3x=0\)

\(\Leftrightarrow x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(F\left(x\right)-3x+5\)

\(=4x^2+3x-2-3x+5\)

\(=4x^2+3\)

\(x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)

Vậy ...

8 tháng 4 2018

a) M(x) + N(x) + P(x) = x5 + 7x4 - 6x3 - 3x2 + x - 4

1 tháng 9 2020

a)

\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)

\(=-6+14x^6-5x^2\)

→ Sắp xếp: \(A=14x^6-5x^2-6\)

\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)

\(=-6-10x^2+4x^4-2x+14x^6\)

→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)

b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)

\(=28x^6-15x^2+4x^4-2x-12\)

\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)

\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)

\(=5x^2-4x^4+2x\)