K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi \(d=\left(a,b\right)\)(d>0)

\(\Rightarrow\hept{\begin{cases}a=dx\\b=dy\end{cases}}\)(x,y)=1

Ta có \(a^2+b^2=d^2\left(x^2+y^2\right)⋮ab=d^2xy\)

\(\Rightarrow x^2+y^2⋮xy\)

Vì (x,y)=1 nên \(\hept{\begin{cases}x^2+y^2⋮x\\x^2+y^2⋮y\end{cases}\Rightarrow}x=y=1\)

do đó \(A=\frac{d^{2018}\left(x^{2018}+y^{2018}\right)}{d^{2018}.x^{1009}.y^{1008}}=2\)

3 tháng 4 2018

Ta có vì \(a^2+b^2\) chia hết cho \(ab\)

=>A= \(\frac{a^{2018}}{a^{1009}b^{1009}}+\frac{b^{2018}}{a^{1009}b^{1009}}\) =  \(\frac{a^{1009}}{b^{1009}}+\frac{b^{1009}}{a^{1009}}\) (Rút gọn)

Gọi a1009 là x,b1009 là y

=> \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\)\(=\frac{x^2+y^2-2xy}{xy}+2=\frac{\left(x-y\right)^2}{xy}-2\)

Vì (x-y)2>= 0 với mọi x,y => \(\frac{\left(x-y\right)^2}{xy}+2\)luôn lớn hơn hoặc bằng 2 

Vậy dấu bằng xảy ra khi x-y=0 => x=y

Vì a2 + b2 chia hết cho ab => a,b là ước chung => a=b

Vậy A =2

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

3 tháng 2 2020

GIẢ SỬ \(\frac{A}{B}=\frac{C}{D}\)

ĐẶT\(\frac{A}{B}=\frac{C}{D}=T\)=>A = BT , C = DT 

TA CÓ\(\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(\left(B\cdot T\right)^2+B^2\right)}{\left(\left(D\cdot T\right)^2+D^2\right)}=\frac{\left(B^2\cdot\left(T^2+1\right)\right)}{\left(D^2\cdot\left(T^2+1\right)\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(1\right)\)

LẠI CÓ\(\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}=\frac{\left(B\cdot T\cdot B\right)}{\left(D\cdot T\cdot D\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(2\right)\)

TỪ (1) VÀ (2) \(\Rightarrow\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}\)( THÕA ĐỀ )

=> ĐIỀU GIẢ SỬ ĐÚNG => DPCM

5 tháng 2 2020

sao ban ko k cho minh

30 tháng 11 2018

Câu 2:   A =    \(^{1+2+2^2+2^{ }^3+...+2^{2017}}\)

          2A = \(2+2^2+2^3+...+2^{2018}\)

Suy ra 2A - A =\(2^{2018}-1\) Do đó A < B

30 tháng 11 2018

1. Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\Rightarrow a=2016t,b=2017t,c=2018t\)

\(\left(a-c\right)^3=\left(2016t-2018t\right)^3=\left(-2t\right)^3=-8t^3\)

\(8\left(a-b\right)^2\left(b-c\right)=8\left(2016t-2017t\right)^2\left(2017t-2018t\right)=8.\left(-t\right)^2.\left(-t\right)=-8t^3\)

Vậy \(\left(a-c\right)^3=8\left(a-b\right)^2\left(b-c\right)\)