K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

XCFKLVZG

1 tháng 11 2020

Hiển nhiên quá nhỉ

\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)

Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm) 

19 tháng 7 2016

Cho phương trình 

x^2-3x+1

Có hai nghiệm là x1;x2

Đặt An=x1n+x2n(n>0)

a)CMR   An+2=3An+1 - An

b)CMR An là số nguyên

c)CMR An-2 {(√5+12 )n−(√5−12 )n}2

d) Tìm n để An-2 Là số chính phương