K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Gọi ƯCLN(A; B) = d

=> A ; B chia hết cho d

=> m + n chia hết cho d  và B = m+ n2 chia hết cho d 

m + n chia hết cho d => m(m+ n) chia hết cho d => m+ mn chia hết cho d

=> (m+ mn) - (m2 + n2) chia hết cho d => n(m - n) chia hết cho d

Nhận xét: n và m - n nguyên tố cùng nhau vì 

Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n

Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1

Vậy n; m - n nguyên tố cùng nhau 

Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d

+) Trường hợp:  n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1

=> d = 1 

+) Trường hợp:  m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d

- Khi m lẻ  => 2 chia hết cho d hoặc m chia hết cho d

Nếu 2 chia hết cho d mà d lớn nhất => d = 2

Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1

- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d

Quay lại trường hợp như trên => d = 2 hoặc 1

Vậy d = 1 hoặc d = 2

 

14 tháng 5 2018

       \(n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Ta thấy:    \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp   ( do n thuộc N )   nên chia hết cho  5

                \(5\left(n-1\right)n\left(n+1\right)\)chia hết cho  5

\(\Rightarrow\)\(n^5-n\) chia hết cho 5   (1)

    \(n^5-n=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\) chia hết cho 2,  cho 3

mà   \(\left(2;3\right)=1\) nên   \(n^5-n\)chia hết cho 6   (2)

Do  \(\left(5;6\right)=1\) nên từ (1) và (2)  suy ra:   \(n^5-n\)chia hết cho 30

5 tháng 8 2015

Gọi ƯCLN(2n+1;n(n+1))=d

Ta có: 2n+1 chia hết cho d; n(n+1) chia hết cho d =>vì n chia hết cho d nên n+1 chia hết cho d

=>2n+1-(n+1) chia hết cho d

=>n+1 chia hết cho d

Vì n chia hết cho d nên 1 chia hết cho d hay d=1

=>ƯCLN(2n+1;n(n+1))=1

cách giải mk ko chắc chắn mấy nhưng đáp án thì chắc chắn đúng