Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a>0 và b>0 thì a+c>b+c
Nếu a<0 và b<0 thì a+c<b+c
Nếu a>b và c>0 thì ac>bc
Nếu a>c và c<0 thì ac<bc
a) x^2 >=9 <=> \(\sqrt{x^2}>=\sqrt{9}\)<=> x>=3
b) x^2<= 2 <=> \(\sqrt{x^2< =}\sqrt{2}< =>x< =\sqrt{2}\)
\(a,2x+7\ge0\Leftrightarrow2x\ge-7\Rightarrow x\ge\dfrac{-7}{2}\)
\(b,5-2x\le0\Leftrightarrow-2x\le-5\Leftrightarrow x\ge\dfrac{5}{2}\)
\(c,\dfrac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge x^2+1\Leftrightarrow x+2-x^2-1\ge0\Leftrightarrow x-x^2+1\ge0\)\(\Leftrightarrow-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{5}{4}\ge0\Leftrightarrow-\left(x-\dfrac{1}{2}\right)^2\ge-\dfrac{5}{4}\Rightarrow\left(x-\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\)\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}\ge\sqrt{\dfrac{5}{4}}\\x-\dfrac{1}{2}\ge-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\\x\ge-\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\end{matrix}\right.\)
\(d,\dfrac{x^2+3}{2-x}< 0\Leftrightarrow x^2+3< 2-x\Leftrightarrow x^2+3-2+x\ge0\Leftrightarrow\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{-3}{4}\)( vô lí )
Vậy : BPT trên vô nghiệm
a, \(-3x^2+5x>0\)
\(\Leftrightarrow x\left(-3x+5\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\-3x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-3x+5< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< \frac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>\frac{5}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow0< x< \frac{5}{3}\)
(vì không có giá trị nào của x thỏa mãn \(x< 0,x>\frac{5}{3}\))
Vậy bất phương trình có nghiệm: \(0< x< \frac{5}{3}\)
b, \(x^2-x-6< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow-2< x< 3\)
(vì không có giá trị nào của x thỏa mãn \(x< -2,x>3\))
Vậy bất phương trình có nghiệm: \(-2< x< 3\)
2 câu còn lại tương tự nhé.
Do a>0 nên \(\frac{1}{a}>0\)
Apa dụng bất đẳng thức AM-GM cho 2 số dương a và \(\frac{1}{a}\)ta có
\(a+\frac{1}{a}\ge2.\sqrt{\frac{a.1}{a}}=2\)
Dấu "=" xảy ra khi \(a=\frac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)( Do a>0 )
Ta có : \(a+\frac{1}{a}\ge2\)
\(\Leftrightarrow a+\frac{1}{a}-2\ge0\)
\(\Leftrightarrow\frac{a^2}{a}+\frac{1}{a}-\frac{2a}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-1\right)^2}{a}\ge0\)( luôn đúng \(\forall a>0\))
Vậy ...
a: >=
b: <=
c: >
d: <