K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

25 tháng 3 2016

Đề sai rồi bạn ơi!

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !

20 tháng 10 2019

a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)  

\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)

\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)

dau = xay ra <=> a=b=1/2

chuc ban hoc tot

mik phai di ngu nen lam hoi tat mong bn thong cam

phan b bn lam tuong tu nha

21 tháng 10 2019

1/ Ta có:

\(\left(a-b\right)^2\ge0,\) mọi a, b

<=> \(a^2-2ab+b^2\ge0\)

<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)

<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

Dấu bằng xảy ra <=>  a - b = 0 <=> a  = b.

2/ Dựa vào câu 1. 

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).

15 tháng 8 2020

1) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab+a+b\ge0\)

\(\Leftrightarrow2a^2+2b^2+2-2ab+2a+2b\ge0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2+2a+1\right)+\left(b^2+2b+1\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra \(\Leftrightarrow a=b=-1\)

2/ \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Áp dụng bđt cosi : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{a}.\frac{1}{b}}=4\)(ĐPCM)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

3/ \(\frac{a^2+a+1}{a^2-a+1}>0\)

Vì \(\hept{\begin{cases}a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\\a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\Leftrightarrow\frac{a^2+a+1}{a^2-a+1}>0\)(ĐPCM)