K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}\)

\(\dfrac{1}{\sqrt{k}}=\dfrac{2}{\sqrt{k}+\sqrt{k}}< \dfrac{2}{\sqrt{k+1}+\sqrt{k}}\\ =\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}\\ < 2\left(\sqrt{226}-\sqrt{225}\right)+2\left(\sqrt{225}-\sqrt{224}\right)+...+2\left(\sqrt{3}-\sqrt{2}\right)\\ =2\left(\sqrt{226}-\sqrt{225}+\sqrt{225}-\sqrt{224}+...+\sqrt{3}-\sqrt{2}\right)\\ =2\left(\sqrt{226}-\sqrt{2}\right)< 2\left(\sqrt{225}-\sqrt{2}\right)< 2\left(\sqrt{225}-\sqrt{1}\right)=28\left(đpcm\right)\)

Vậy \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{225}}< 28\)

25 tháng 7 2021

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

22 tháng 9 2023

\(\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}-\sqrt{3}\)

\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-\sqrt{3}\)

\(=2\sqrt{3}-\sqrt{3}\)

\(=\sqrt{3}\)

12 tháng 9 2023

a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)

\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)

\(=\sqrt{5}+\sqrt{5}\)

\(=2\sqrt{5}\)

b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)

\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)

\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)

\(=\sqrt{2}-1-5+\sqrt{2}\)

\(=2\sqrt{2}-6\)