K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

VD : a = 3

b=6

32+62=9+36=45

Vây a và b cùng chia hết cho 3 (32=9;62=36)(9 chia hết cho 3 ;36 chia hết cho 3)

31 tháng 1 2017

Ta có:\(\left(a^2+b^2\right)⋮3\Leftrightarrow a^2⋮3;b^2⋮3\)

\(\orbr{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}\Leftrightarrow\orbr{\begin{cases}a⋮3\\b⋮3\end{cases}}}\)

Suy ra:\(a⋮3\)và \(b⋮3\)

Vậy:\(\left(a^2+b^2\right)⋮3\Rightarrow a⋮3⋮;b3\)

20 tháng 3 2017

Vì (a^2 + b^2 ) chia hết cho 3 nên a^2 chia hết cho 3 , b^2 chia hết cho 3 , 
Mà a^2 chia hết cho 3 nên a cũng chia hết cho 3 , b^2 chia hết cho 3 nên b cũng chia hết cho 3 
Vậy a và b cùng chia hết cho 3

21 tháng 4 2022

a) tự giải

b) Ta có CT dãy số lũy thừa 

\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)

Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên

cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)

lấy B -A, ta đc

\(\dfrac{1}{2}\)

21 tháng 4 2022

cm 

https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

7 tháng 1 2018

Câu a)

Sử dụng đồng dư.

30 tháng 7 2021

mình không biết làm

 

24 tháng 10 2015

+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a: 

a- a = a.(a-1) = a.(a - 1).(a+1) 

Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3

+) khi đó , với mọi số tự nhiên a; b;c ta có: (a-a) + (b-b) + (c- c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - (a + b + c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - 2016  luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a+ b+ c3)  chia hết cho cả 2 và 3

Vậy...