Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
Áp dụng BĐT Cauchy – Schwarz, ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)
\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)
Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?
Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm