Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b\right)^2\ge4ab\)
Từ đó ta có
\(\left(a+b\right)^2+\frac{a+b}{2}\ge4ab+\frac{a+b}{2}\)
Ta cần chứng minh
\(4ab+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
\(\Leftrightarrow8ab+a+b-4a\sqrt{b}-4b\sqrt{a}\ge0\)
\(\Leftrightarrow\left(4ab-4a\sqrt{b}+a\right)+\left(4ab-4b\sqrt{a}+b\right)\ge0\)
\(\Leftrightarrow\left(2\sqrt{ab}-\sqrt{a}\right)^2+\left(2\sqrt{ab}-\sqrt{b}\right)^2\ge0\)(đúng)
\(\Rightarrow\)ĐPCM là đúng
Nhon ~~ Xin Chào Bạn Nha >< Hiện Giờ Bên Tụi Mk đang có 1 cuộc thi đó là cuộc thi ảnh đẹp nhoa >< Nếu Bạn mún tham gia Hãy Chọn 1 Tấm hik Đẹp Nhất của mk Và Đưa Link ảnh đó cho mk . sau ngày hum nay 20/5 -> đến Ngày 22 / 5 Mk sẽ ra Kết qả và gửi cho Bạn /
giải nhất sẽ đc 3 mỗi ngày , thời hạn sẽ kết thúc sau khi hết 1 tuần
giải nhì sẽ được 2 mỗi ngày . kết thúc sau 4 ngày
giải 3 sẽ đc mk kb + 1
.>< Thanh Kìu nhìu nhoa ><
Câu b : Ta có :
\(\left(a+b\right)^2+\dfrac{a+b}{2}=\left(a+b\right)\left(a+b+\dfrac{1}{2}\right)=\left(a+b\right)\left[\left(a+\dfrac{1}{4}\right)+\left(b+\dfrac{1}{4}\right)\right]\)
Áp dụng BĐT Cô - Si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\a+\dfrac{1}{4}\ge\sqrt{a}\\b+\dfrac{1}{4}\ge\sqrt{b}\end{matrix}\right.\)
\(\Rightarrow VT\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=2a\sqrt{b}+2b\sqrt{a}\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b=-\dfrac{1}{4}\)
Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.
Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Bài làm :
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)
\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)
Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)
Ta có biến đổi của vế trái :
\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)
\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )
p/s: làm hơi tắt một chút, mong bạn thông cảm.
Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)
\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)
\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)
\(\ge\text{}\Sigma\text{}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)
\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=2+ab+bc+ca\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dat \(P=\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\)
Ta co:
\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}=\frac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\frac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tuong tu:
\(\frac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\frac{\sqrt{3}b^2}{a^2+b^2+c^2}\)
\(\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\frac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\frac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
Dau '=' xay ra khi \(a=b=c\)
Đặt \(a=x^2;b=y^2\) với x;y dương
Ta cần chứng minh: \(\left(x^2+y^2\right)^2+\frac{1}{2}\left(x^2+y^2\right)\ge2x^2y+2xy^2\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2+\frac{1}{2}x^2+\frac{1}{2}y^2-2x^2y-2xy^2\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\frac{1}{2}x^2\left(4y^2-4y+1\right)+\frac{1}{2}y^2\left(4x^2-4x+1\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\frac{1}{2}x^2\left(2y-1\right)^2+\frac{1}{2}y^2\left(2x-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\) hay \(a=b=\frac{1}{4}\)