K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Câu hỏi của TAK Gaming - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

31 tháng 12 2019

Có: \(\frac{a}{1+ab}=\frac{b}{1+bc}=\frac{c}{1+ac}\)

Vì a, b, c đôi một khác nhau nên suy ra a, b, c khác 0.

=> \(\frac{1+ab}{a}=\frac{1+bc}{b}=\frac{1+ac}{c}\)

=> \(\frac{1}{a}+b=\frac{1}{b}+c=\frac{1}{c}+a\)

=> \(\hept{\begin{cases}\frac{1}{a}+b=\frac{1}{b}+c\\\frac{1}{b}+c=\frac{1}{c}+a\\\frac{1}{c}+a=\frac{1}{a}+b\end{cases}}\)=> \(\hept{\begin{cases}\frac{b-a}{ab}=c-b\\\frac{c-b}{bc}=a-c\\\frac{a-c}{ac}=b-a\end{cases}}\)

Nhân vế theo vế ta có: \(\frac{\left(b-a\right)\left(c-b\right)\left(a-c\right)}{ab.bc.ac}=\left(c-b\right)\left(a-c\right)\left(b-a\right)\)

=> \(\frac{1}{a^2b^2c^2}=1\)

=> \(\left(abc\right)^2=1\)

=> \(M=abc=\pm1\)

Các số ab=a.b hay ab=ab;bc=b.c hay bc=bc;ca=a.c hay ca=ca

Và abc=a.b.c hay abc=abc

Trả lời nhanh mk giúp cho

Chúc bn học tốt

2 tháng 1 2017

\(S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{bc}{bc+bc^2+c^2ab}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}\)

\(=\frac{1+b+bc}{1+bc+b}=1\rightarrow S=1\)

13 tháng 2 2019

\(S=1\)

11 tháng 11 2015

\(\frac{a}{a+ab+1}=\frac{ac}{ac+1+c}\)
\(\frac{bc}{b+bc+1}=\frac{ac}{1+ac+c}\)
=>A=1 

28 tháng 3 2019

\(HUY=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}=1\)